• Title/Summary/Keyword: Number of seed per hill

Search Result 20, Processing Time 0.029 seconds

Growth and Yield in Direct Seeded Rice Cultivation with Iron Coated-Seeds (철분코팅 볍씨를 이용한 벼 직파재배의 생육 특성 및 수량)

  • Park, K.H.;Park, S.T.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.5-18
    • /
    • 2018
  • The field trial was performed to evaluate the rice growth and yield in direct seeding cultivation with iron-coated rice seeds. The required time for seed emergence was for 9~11days in the tested direct seeding methods. That was 1~2days earlier in direct seeding with pregerminated seeds than that of direct seeding with iron-coated seeds. The seedling establishment was highest in water seeding with iron-coated seeds but there was not significant difference in terms of statistical analysis. The rice plant height was taller in water seeding with broadcasting method than that of wet hill-seeding methods and in direct seeding with iron-coated seeds than that of direct seeding with pregerminated seeds. The tiller number in the rice plant was the highest in machine transplanting at 30days after direct seeding(June 17) and in water seeding with iron-coated seeds at 45days after seeding(DAS) and 60DAS. The tiller number of 75 and 90DAS in the tested rice cultivation methods being with 352~405/m2 was not significantly different in terms of statistical analysis. The heading time was not different in rice direct seeding methods but 2 day earlier in direct seeding with iron-coated seeds than that of direct seeding with pregerminated seeds. The culm length was the highest in water seeding with iron-coated seeds and the panicle length was the longest in wet hill-seeding with pregerminated seeds. The panicle number per m2 was highest in water seeding with iron-coated seeds but not significant difference among the tested rice cultivation methods. The water seeding with iron-coated seeds resulted in the highest spikelet number per m2 and the heaviest grain weight of brown rice. Percentage of ripened kernel was the highest in wet hill-seeding with iron-coated seeds. But there were not significant among the tested rice cultivation methods. The milled rice yield in direct seeding methods was 3~21% higher than that in machine transplanting. Water seeding with iron-coated seeds recorded the highest milled rice yield being with 6.86t/ha.The occurrence of sheath blight was high according to machine transplanting>wet hill-seeding>water seeding. Weed occurrence was the highest in water seeding with pregerminated seeds. Weedy rice occurred not in machine transplanting but occured 0.6~0.7% in direct seeding methods with pregerminated seeds and 0.1% in direct seeding with iron-coated seeds.

Germinability during Overwintering, Field Emergence, and Growth of Shattered Rice Seeds on Paddy Field (논 표면 탈립 벼 종자의 월동중 발아력변화와 월동후 포장 출현 및 생육)

  • 송영주;권영립;오남기;고복래;황창주;박건호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.37-44
    • /
    • 1992
  • Germinability, electrophoretic variation of protein of shattered seeds during overwintering and characteristic of main agronomic traits of off-type rice plant occurring in paddy field harvested by combine were investigated. Germinability of shattered seed decreased as time goes in paddy field in both Japonica and Tongil type varieties. Electrophoretic protein bands become more and more light as time goes. Occurrence of off-type rice plant was higher in Japonica varieties than in Tongil type varieties. Off-type rice plant was shorter in plant height, leaf length, tiller number per hill, internode length, panicle length and spike let number per panicle. Germinability of seeds of off-type rice plant as not significantly different compared to the control variety. Yield of off-type plants of Japonica varieties was on average 5.1kg / 10a and that of Tongil type varieties was on average 0.9kg /10a. Mixing ratio to the control variety was about 0.7% in Japonica varieties and that of Tongil type varieties was about 0.1%.

  • PDF

Studies on the Procedures of Accelerating Generation Advancement in Wheat and Barley Breeding IV. Advancement of Two Generations of Wheat Materials a Year at Suweon by Growing a Summer Generation (맥류의 세대촉진방법에 관한 연구 IV. 수원지역에서 소맥 1년 2기작 세대촉진재배)

  • Seong, B.Y.;Cho, C.H.;Park, M.W.;Hong, B.H.;Ahn, W.S.;Nam, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.35-42
    • /
    • 1980
  • To establish a generation acceleration technique, two crops a year at field condition of Suweon, 10 varieties different in their spring growth habit were tested with 6 different seeding time after harvesting. These materials were harvested on June 10, 19, 79 and tested for their seed production ability at varions seeding time from July I I to August 15 with a week interval. An immatured seed germination technique and green vernalization methods were applied in cycling generations and the results obtained were summarized as follows. 1. In summer growing, seedlings establishment after transplanting was better in earlier transplanting. 2. Heading time was remarkably enhanced by earlier transplanting. Considering the results of two years early or mid of July was the suitable time to plant the second summer crop. 3. Those varieties of spring growth habit expressed little variations in plant height among the varieties. In 1978 which is referred as warm year produced plant height as tall as 8-16cm and poor crop but produced good crop with 25-65cm plant height in 1979. 4. No definit tendency in the length of spike was. observed among the cultivars but longer spike was found in winter wheat compared to the spring. 5. Number of spikes per plant was ranged from 1 to 3 regardless the transplanting time in 1979. However, more spikes per plant were produced in early or mid of July transplanting and those varieties of higher growth habit than V did not produces any spikes. 6. Higher number of grains per spike was found at earlier transplanted varieties. Therefore, it is concluded that those materials of I-IV growth habit with mid or early July transplanting would be suitable in practical sense considering their ability of seed production. 7. Two-year results indicated that wheat crop can not tolerate the temperature level higher than average 32$^{\circ}C$ C at Suweon. In this regard, the cultivation schedule was established assuming average temperature condition like the year of 1979 which was possible to grow wheats.

  • PDF

Farmer's Field Trial of Different Coating and Covering Materials on Rice Growth and Yield in Wet Hill Seeded Rice (볍씨 코팅 및 규산복토에 따른 벼 무논점파재배 농가실증시험연구)

  • Park, Kwang Ho;Kim, Yang Sik;Chang, Jin Tack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The experiment was conducted to evaluate rice growth and yield as affected by different coating and covering materials such as a iron, silicate, iron and silicate mixture of rice seeds in farmer's rice growing field. The tiller number was 36.7 at iron-coated seeds, 32.8 at silicate-covered seeds, 30.3 at iron and silicate mixture coated seeds and 30.2 at untreated control in 44days after seeding. The seedling height was 38.2cm of iron and silicate mixture, 37.7cm of untreated control, 36cm of iron-coated and 35.7cm of silicate covered seeds in 43days after seeding. At 75days after seeding rice tiller number was 153 of iron-coated seeds, 152 of silicate-covered seeds, 147 of untreated seeds and 141 of iron and silicate mixture-coated seeds and also there were different plant height growth of 87.4cm in silicate-covered seeds, 85.7cm in iron and silicate mixture, 85.4cm in untreated control and 83.0cm in iron-coated seeds. The panicle length was of 21.0cm in iron and silicate mixture coated seeds, 20.8cm in silicate covered seeds, 20.7cm in untreated control seeds and 20.6cm in iron-coated seeds. The panicle number was 464 at iron-coated seeds, 404 at untreated control seeds, 427 at silicate-covered seeds and 412 at iron and silicate mixture coated seeds. The spikelet number per m2 was of 32,503 in iron-coated seeds, 31,813 in silicate-covered seeds, 29,646 in untreated control, 28,896 in iron and silicate mixture coated seeds. The ripened ratio of rice grain was of 94.5% at iron-coated seeds, 93.9% at iron and silicate mixture coated seeds, 93.6% at silicate covered seeds and 93.2% at untreated control seeds. The rice yield was of 591kg/10a at iron-coated seeds, 580kg/10a at silicate-covered seeds, 571kg/10a at iron and silicate mixture-coated seeds and 539kg/10a at untreated control.

Optimum Seeding Date of Wet Hill Seeding on Puddled Soil after Weedy Rice Control in Southern Plain Area of South Korea (잡초성벼 경종적 방제 후 남부지역 벼 무논점파재배 파종적기)

  • Hwang, Woon-Ha;Jeong, Jae-Hyeok;Lee, Hyen-Seok;Yang, Seo-Yeong;Lee, Chung-Keun;Cho, Seung-Hyun;Min, Hyun-Kyung;Kim, Sang-Kuk;Han, Eun-Hui;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.273-281
    • /
    • 2018
  • Wet hill seeding (WHS) is one of the more famous labor and money saving methods technology used for rice cultivation. In WHS, rice standing percentage and weedy rice occurrence are the most important factors considered to secure a rice yield. We investigated the optimum seeding date of WHS in the Southern Plain area of South Korea. Weedy rice needed two weeks at $15^{\circ}C$ to show over 80% emergence. Germinated rice seed grown at $20^{\circ}C$ needed over for 10 days to achieve a shoot length over 3 cm. In field cultivation, the mean temperature for ten days after seeding showed a highly positive correlation with rice standing rate, spikelet number per square meter and yield index that favorably compared to machine transplanting. With these data, we suggest that the optimum seeding date of WHS that can secure over 98% of yield index of machine transplanting in Southern part of Korea is May. 21~Jun. 5 in Honam and May. 16~Jun. 5 in Yeongnam area.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Growth and Grain Characteristics of Thin-Shelled High-Yielding Lines of Job's-tears (Coix lacryma-jobi L.) (율무 박피(薄皮) 다수성(多收性) 선발(選拔) 계통(系統)의 생육(生育) 및 종실특성(種實特性))

  • Lee, Jung-Il;Park, Jang-Hwan;Kim, Sok-Dong;Ahn, Byeong-Ok;Lee, Seung-Tack
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 1993
  • This study was conducted to select thin-shelled and high-yielding lines in job's-tears. Two breeding lines of Suwon 3 and Suwon 6 were selected from the local collections. These two lines were tested and investigated on their characteristics under the field condition. The heading date of Suwon 3 and Suwon 6 was later one or two days, but the maturity date was one or two days earlier than that of check variety Kim-jejong, respectively. The number of grains per hill of Suwon 3, Suwon 6 was 50%, 49% greater and the milling rate was 3.8%, 5.6% higher than that of check variety, respectively. Althought 1000 grain weight of Suwon 3 and Suwon 6 was 20g lighter and the rate of ripeness was 6%, 12% lower, the raw grain yield was 22%, 20% higher than that of check variety, respectively. The thickness of seed coat of Suwon 3 and Suwon 6 was thiner and the hardness of seed coat was lower than that of check variety, therefore the milling time was decreased 12%, 7% compare to check variety, respectively. The crude protein contents of Suwon 3 and Suwon 6 was slightly higher and the amino acid composition of Suwon 6 was similar to Kimjejong, but Suwon 3 was lower than that of check variety.

  • PDF

Multivariate Analysis of Variation of Growth and Quality Characteristics in Colored Rice Germplasm (유색미 도입 유전자원의 생육 및 품질특성 변이 다변량 분석)

  • Park, Jong-Hyun;Lee, Ji-Yoon;Chun, Jae-Buhm;You, Oh-Jong;Son, Eun-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.175-185
    • /
    • 2018
  • The aim of this study was to evaluate the variation of growth and quality characteristics in colored rice from 178 accessions and to develop useful, basic rice breeding data by classifying these germplasm characteristics via principal component (PC) analysis. The coefficient of variation of the 178colored rice accessions were the highest for panicle length (PL) and protein contents, followed by length-width ratio (LWR), 1000-grain weight (TGW), culm length (CL), and amylose contents, whereas the lowest was for the number of panicles per hill (NP), which is a yield component. The results from the PC analysis exhibited eigenvalues and contributions respective to each PC as follows: PC1, 2.06 and 29.49%; PC2, 1.31 and 18.75%; PC3, 1.21 and 17.36%; PC4, 1.01 and 14.38%. The eigenvalues of four PCs were over 1.0, and their cumulative contributions were 79.98%, which completes the necessary condition for evaluation of the 178 colored rice accessions. Cluster analysis showed cluster I as the largest, which included 79 accessions, while clusters II, III, IV, V, VI, and VII comprised 46, 19, 13, 4, 8, and 9 accessions, respectively. Moreover, dark brown accessions were dispersed in clusters I and II, and many resources of purple seed coat color were found in clusters V, VI, and VII. Particularly, cluster V had resources of only black and purple seed coat colors. Resources of cluster VII were found to have a relatively small average CL, PL, and LWR; notably, cluster V had the smallest average TGW, and cluster IV the lowest NP but the highest TGW. Finally, considering the yield potential, growth characteristics, heading stage, and color during breeding of colored rice, we obtained the following conclusions: cluster VII is suitable for breeding of colored rice; cross breeding among clusters I, II, and VII has a high yield potential; and it is possible to produce a superior color by cross breeding plants from cluster V and VI.

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF

Studies on the ecological variations of rice plant under the different seasonal cultures -I. Variations of the various agronomic characteristics of rice plant under the different seasonal cultures- (재배시기 이동에 의한 수도의 생태변이에 관한 연구 -I. 재배시기 이동에 의한 수도의 실용제형질의 변이-)

  • Hyun-Ok Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.1-40
    • /
    • 1965
  • To measure variations in some of the important agronomic characteristics of rice varieties under shifting of seedling dates, this study has been carried out at the Paddy Crop Division of Crop Experiment Station(then Agricultural Experiment Station) in Suwon for the period of three years 1958 to 1960. The varieties used in this study were Kwansan, Suwon #82, Mojo, Paltal and Chokwang, which have the different agronomic characteristics such as earliness and plant type. Seeds of each variety were sown at 14 different dates in 10-day interval starting on March 2. The seedlings were grown on seed bed for 30, 40, 50, 60, 70 and 80 days, respectively. The results of this study are as follows: A. Heading dates. 1. As the seeding date was delayed, the heading dates was almost proportionally delayed. The degree of delay was higher in early varieties and lower in late varieties and the longer the seedling stage, the more delayed the heading date. 2. Number of days to heading was proportionally lessened as seeding was delayed in all the varieties but the magnitude varied depending upon variety. In other words, the required period for heading in case of late planting was much shortened in late variety compared with early one. Within a variety, the number of days to heading was less shortened as the seedling stage was prolonged. Early variety reached earlier than late variety to the marginal date for the maximum shortening of days to heading and the longer the seeding stage, the limitted date came earlier. There was a certain limit in seeding date for shortening of days to heading as seeding was delayed, and days to heading were rather prolonged due to cold weather when seeded later than that date. 3. In linear regression equation, Y=a+bx obtained from the seeding dates and the number of days to heading, the coefficient b(shortening rate of days to heading) was closely correlated with the average number of days to heading. That is, the period from seeding to heading was more shortened in late variety than early one as seeding was delayed. 4. To the extent that the seedling stage is not so long and there is a linear relationship between delay of seeding and shortening of days to heading, it might be possible to predict heading date of a rice variety to be sown any date by using the linear regression obtained from variation of heading dates under the various seeding dates of the same variety. 5. It was found out that there was a close correlation between the numbers of days to heading in ordinary culture and the other ones. When a rice variety was planted during the period from the late part of March to the middle of June and the seedling ages were within 30 to 50 days, it could be possible to estimate heading date of the variety under late or early culture with the related data of ordinary culture. B. Maturing date. 6. Within (he marginal date for maturation of rice variety, maturing date was proportionally delayed as heading was delayed. Of course, the degree of delay depended upon varieties and seedling ages. The average air temperature (Y) during the ripening period of rice variety was getting lower as the heading date. (X) was delayed. Though there was a difference among varieties, in general, a linear regression equation(y=25.53-0.182X) could be obtained as far as heading date were within August 1 to September 13. 7. Depending upon earliness of a rice variety, the average air temperature during the ripening period were greatly different. Early variety underwent under 28$^{\circ}C$ in maximum while late variety matured under as low as 22$^{\circ}C$. 8. There was a highly significant correlation between the average air temperature (X) during the ripening period, and number of day (Y) for the maturation. And the relationship could be expressed as y=82.30-1.55X. When the average air temperature during the period was within the range of 18$^{\circ}C$ to 28$^{\circ}C$, the ripening period was shortened by 1.55 days with increase of 1$^{\circ}C$. Considering varieties, Kwansan was the highest in shortening the maturing period by 2.24 days and Suwon #82 was the lowest showing 0.78 days. It is certain that ripening of rice variety is accelerated at Suwon as the average air temperature increases within the range of 18$^{\circ}C$ to 28$^{\circ}C$. 9. Between number of days to heading (X) related to seeding dates and the accumulated average air temperature (Y) during the ripening period, a positive correlation was obtained. However, there was a little difference in the accumulated average air temperature during the ripening period even seeding dates were shifted to a certain extent. C. Culm- and ear-lengths. 10. In general all the varieties didn't show much variation in their culm-lengths in case of relatively early seeding but they trended to decrease the lengths as seeding was delayed. The magnitude of decreasing varied from young seedlings to old ones. Young seedlings which were seeded during May 21 to June 10 didn't decrease their culm-lengths, while seedlings old as 80 days decreased the length though under ordinary culture. 11. Variation in ear-length of rice varieties show the same trend as the culm-length subjected to the different seeding dates. When rice seedlings aged from 30 to 40 days, the ear-length remained constant but rice plants older than 40 days obviously decreased their ear-lengths. D. Number of panicles per hill. 12. The number of panicles per hill decreased up to a certain dates as seeding was delayed and then again increased the panicles due to the development of numerous tillers at the upper internodes. The seeding date to reach to the least number of panicles of rice variety depended upon the seedling ages. Thirty- to 40-day seedlings which were seeded during May 31 to June 10 developed the lowest number of panicles and 70- to 80-day seedlings sown for the period from April 11 to April 21 reached already to the minimum number of panicles. E. Number of rachillae. 13. To a certain seeding date, the number of rachillae didn't show any variation due to delay of seeding but it decreased remarkably when seeded later than the marginal date. 14. Variation in number of rachillae depended upon seedling ages. For example, 30- to 40-day old seedlings which, were originally seeded after May 31 started to decrease the rachillae. On the other hand, 80-day old seedlings which, were seeded on May 1 showed a tendency to decrease rachillae and the rice plant sown on May 31 could develop narrowly 3 or 4 panicles. F. Defective grain and 1.000-grain weights. 15. Under delay of the seeding dates, weight of the defective grains gradually increased till a certain date and then suddenly increased. These relationships could be expressed with two different linear regressions. 16. If it was assumed that the marginal date for ripening was the cross point of these two lines, the date seemed. closely related with seedling ages. The date was June 10- in 30- to 40-day old seedlings but that of 70- to 80-day old seedlings was May 1. Accordingly, the marginal date for ripening was getting earlier as the seedling stage was prolonged. 17. The 1.000-grain weight in ordinary culture was the heaviest and it decreased in both early and late cultures. G. Straw and rough rice weights. 18. Regardless of earliness of variety, rice plants under early culture which were seeded before March 22 or April 1 did not show much variation in straw weight due to seedling ages but in ordinary culture it gradually decreased and the degree was became greater in late culture. 19. Relationship between seeding dates (X) and grain weight related to varieties and seedling ages, could be expressed as a parabola analogous to a line (Y=77.28-7.44X$_1$-1.00lX$_2$). That is, grain yield didn't vary in early culture but it started to decrease when seeded later than a certain date, as seeding was delayed. The variation was much greater in cases of late planting and prolongation of seedling age. 20. Generally speaking, the relationship between grain yield (Y) and number of days to heading (X) was described with linear regression. However, the early varieties were the highest yielders within the range of 60 to 110, days to heading but the late variety greatly decreased its yield since it grows normally only under late culture. The grain yield, on the whole, didn't increase as number of days to heading exceeded more than 140 days.

  • PDF