• Title/Summary/Keyword: Number of projections

Search Result 81, Processing Time 0.022 seconds

A Comparative Study Between Light Extinction and Direct Sampling Methods for Measuring Volume Fractions of Twin-Hole Sprays Using Tomographic Reconstruction

  • Lee, Choong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1986-1993
    • /
    • 2003
  • The spatially resolved spray volume fractions from both line-of-sight data of direct measuring cells and a laser diffraction particle analyzer (LDPA) are tomographically reconstructed by the Convolution Fourier transformation, respectively. Asymmetric sprays generated from a twin-hole injector are tested with 12 equiangular projections of measurements. For each projection angle, a line-of-sight integrated injection rate was measured using a direct sampling method and also a liquid volume fraction from a set of line-of-sight Fraunhofer diffraction measurements was measured using a light extinction method. Interpolated data between the projection angles effectively increase the number of projections, significantly enhancing the signal-to-noise level in the reconstructed data. The reconstructed volume fractions from the direct sampling cells were used as reference data for evaluating the accuracy of the volume fractions from the LDPA.

Tomographic reconstruction of Asymmetric Spray by Direct Sampling Method (직접샘플링에 의한 비대칭 분무의 토모그래피 재구성)

  • Lee, C.H.;Won, J.C.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2002
  • Convolution Fourier transformation tomographically reconstructs the spatially resolved spray injection rate from direct measuring cells. Asymmetric sprays generated from a twin-hole air shroud injector are tested with 12 equiangular projections of measurements. For each projection angle, line of sight integrated injection rate was measured at 35 positions with equal spacing measuring cells of 3 mm in width, 100 mm in length, 55 mm in depth and 0.5 mm thickness of separating wall. Interpolated data between the projection angles effectively increase the number of projections, which significantly enhances the signal-to-noise level in the reconstructed data. This modified convolution Fourier transformation scheme predicts well the structure of asymmetric sprays. Comparative study has been made between sprays with and without air shrouding. Tomograhpic reconstruction of injection rate from direct measuring cells obtained can be used to estimate the accuracy of volume fraction of spray from the LDPA tomographic reconstruction.

  • PDF

Hypothalamic Orexin-A Projections to Midline Thalamic Nuclei in the Rat

  • Lee, Hyun-S.
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.145-152
    • /
    • 2005
  • A retrograde tracer, WGA-apo-HRP-gold, was injected into midline thalamic nuclei and subsequently orexin-A immunostaining was performed on the tuberal region of the hypothalamus in order to investigate orexinergic projections to the midline thalamus. Injection site was targeted within one specific region, i.e., paraventricular, centromedian, rhomboid, reuniens, or intermediodorsal nucleus, but it proved to be either one or a combination of these thalamic nuclei. The distribution of WG/orexin-double-labeled neurons exhibited a general pattern in that the majority of labeled cells were observed within the ventral portion of the lateral hypothalamus as well as the perifornical nucleus (PeF). A small number of double-labeled cells were also observed at the dorsomedial nucleus, the area dorsal to the PeF, dorsal portion of the lateral hypothalamus, and the posterior hypothalamus. These orexin-immunoreactive neurons might have wake-related influences over a variety of functions related with midline thalamic nuclei, which include autonomic control, associative cortical functions, and limbic regulation.

Influence of CT Reconstruction on Spatial Resolution (CT 영상 재구성의 공간분해능에 대한 영향)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Computed tomography, which obtains section images from reconstruction process using projection images, has been applied to various fields. The spatial resolution of the reconstructed image depends on the device used in CT system, the object, and the reconstruction process. In this paper, we investigates the effect of the number of projection images and the pixel size of the detector on the spatial resolution of the reconstructed image under the parallel beam geometry. The reconstruction program was written in Visual C++, and the matrix size of the reconstructed image was $512{\times}512$. The numerical bar phantom was constructed and the Min-Max method was introduced to evaluate the spatial resolution on the reconstructed image. When the number of projections used in reconstruction process was small, artifact like streak appeared and Min-Max was also low. The Min-Max showed upper saturation when the number of projections is increased. If the pixel size of the detector is reduced to 50% of the pixel size of the reconstructed image, the reconstructed image was perfectly recovered as the original phantom and the Min-Max decreased as increasing the detector pixel size. This study will be useful in determining the detector and the accuracy of rotation stage needed to achieve the spatial resolution required in the CT system.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

A Study on the Generation of Block Projections for the Assembly Shops (정반 배치용 블록 투영 형상 생성에 관한 연구)

  • Ruy, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.203-211
    • /
    • 2014
  • To raise the industrial competitiveness in the field of ship-building, it is crucially important that the yard should use production facilities and working space effectively. Among the related works, the management of tremendous blocks' number, the limited area of assembly shops and inefficient personnel and facility management still need to be improved in terms of being exposed to a lot of problems. To settle down these conundrums, the various strategies of block arrangement on the assembly floors have been recently presented and in the results, have increasingly began to be utilized in practice. However, it is a wonder that the sampled or approximated block shapes which usually are standardized projections or the geometrically convex contour only have been prevailed until now. In this study, all parts including the panel, stiffeners, outer shells, and all kinds of outfitting equipment are first extracted using the Volume Primitive plug-in module from the ship customized CAD system and then, the presented system constructs a simpler and more compact ship data structure and finally generates the novel projected contours for the block arrangement system using the adaptive concave hull algorithm.

Physiological Studies on the Function of Biological Membrane: Structural Changes of the Vitelline Envelopes during Oogenesis of a Polychaete, Nectoneanthes oxypoda (생체막의 기능에 대한 생리학적 연구: 갯지렁이 Nectoneanthes oxypoda의 난자형성단계에 따른 난황막의 구조적 변화)

  • Lee, Yang-Rim
    • Applied Microscopy
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 1990
  • Structural changes of the vitelline envelopes during oogenesis of a polychaete, Nectoneanthes oxypoda, were examined with a scanning electron micrscope. Oocytes grow in the same coelomic fluid to the final stage, but the surface appears to change in the structure during oogenesis. Projections, which were identified to be microvilli, change in shape, number and size. Short microvilli, which cover the surface of oocyte of $33{\mu}m$ diameter densely, grow in length, reaching a maximum at the stage of $73{\mu}m$. The number of microvilli increases with the stages of oogenesis, reaching a plateau at the stage of $82{\mu}m$. The observations suggest that control of material transport including yolk precursor proteins may be correlated with the structural changes in the microvilli.

  • PDF

Tomogram Enhancement using Iterative Error Correction Algorithm

  • Ko, Dae-Sik;Park, Jun-Sok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.9-13
    • /
    • 1996
  • We developed an iterative algorithm which could improve the resolution of reconstructed tomograms having random attenuation patterns and analyzed the limitation of this algorithm. The simple back-and forth propagation algorithm has depth resolution about four wavelengths. An iterative algorithm, based on back-and-forth propagation, can be used to improve the resolution of reconstructed tomograms. We analyzed the wavefield for multi-layered specimen and programmed iterative algorithm using Clanguage. Simulation results show that the images get clearer as the number of iterations increases. Also, unambiguous images can be reconstructed using this algorithm even when the layer separation is only two wavelengths. However, this iteration algorithm comes up with an incorrect solution for the number of projections less than five.

  • PDF

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

Estimating the Number of Seats in Local Constituencies of a Party Using Exit Polls in the General Election (총선 출구조사에서 정당별 지역구 의석수 추정)

  • Kim, Ji-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.59-70
    • /
    • 2013
  • Exit polls failed to estimate the number of seats in the National Assembly for each party in the 2012 General Election, even though they estimated it in interval. Three major broadcast companies jointly carried out exit polls, but made projections independently. The exact methods of projection were not publicly released. This paper proposes confidence intervals for the number of seats in local constituencies using the results of exit polls, and conducted simulation studies to assess the performance of the cofidence intervals. The proposed confidence intervals were applied to the real data of 2012 General Election.