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In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic

hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters

and system structure (via coordination number) on dynamic critical points was elucidated. The Ising

magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted,

and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the

dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the

dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided

into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring

ANN network with highest accuracy. The network was then used to predict dynamic critical points of the

untrained input. The predicted and the targeted outputs were found to match well over an extensive range even

for systems with different structures and field parameters. This therefore confirms the ANN capabilities and

indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the

dynamic-phase-diagram.
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1. Introduction

The topic on dynamic hysteresis behavior has long been

accepted as a very challenging problem. This is as the

dynamic characteristic of the hysteresis is due to the

lagging effect between the oscillating driving field and its

dependent parameter, e.g. electric field and polarization,

magnetic field and magnetization, or mechanical stress

and strain. Even at a particular magnitude of the field,

there are large number of possibilities that the field at that

magnitude can be generated (e.g. by varying starting

field, field amplitude, field frequency, and rate of field

changing), and this leads to many possibilities the lagging

patterns could be. Moreover, the environmental temperature

and the microstructure of the investigating materials also

have strong effect on the hysteresis. Therefore, the investi-

gation on the hysteresis topic is akin to a going on and on

topic. Moreover, apart from fundamental interest, the

understanding in hysteresis phenomena is very useful in

designing many applications, e.g. transformer, transducer,

actuator and digital recording media, etc [1-4]. For instance,

magnetic hysteresis with somewhat large coercivity is

useful for magnetic recording media in term of data

stability, but the hysteresis with fairly low coercivity is

required in transformer in minimizing the energy dissipation.

As the field features have strong effect on the hysteresis

characteristic, field amplitude, field frequency, temperature,

and material microstructure dependence of hysteresis

parameters are important for enhancing the understanding

in the hysteresis topic. Previous experimental and theoretical

investigations (e.g. [5-13]) have been previously performed.

For instance, the hysteresis area A dependence on the

external field parameters (i.e. amplitude h0, and frequency

f ) and temperature T were measured and fitted using

power law scaling with the  where α, β and γ

are exponents to the scaling [11-13]. 

However, the success of this power law scaling strongly

depends on the range of the fit. Specifically, the hysteresis
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area peculiarly varies with the field frequency. With

increasing the field frequency, the area increases at low

frequencies but decreasing at high frequencies, due to the

increase in lagging effect with enhancing the field sweep-

ing magnitude. Therefore, two different scaling forms

have to be proposed i.e. power law growth for low fre-

quencies and power law decay for high frequencies,

which is inconvenient and fails when the considered

frequencies are lying in the region between low and high

frequencies. In addition, in some systems, the scaling

exponents (α, β and γ) are not constants. For instance, it

was found that the frequency exponent (α) can be a

function of the field amplitude, and also the amplitude

exponent (β) can be a function of field frequencies [13].

Therefore, instead of obtaining simple function being able

to predict the hysteresis phenomena, what one gets in this

case is a more complicate function. 

One description which could be the answer for why the

scaling does not work well is that there occurs dynamic

phase transition in hysteresis system [9, 14]. The dynamic

phase transition is the transition between the dynamic

paramagnetic phase (where the hysteresis is a symmetric

loop) and the dynamic ferromagnetic phase (where the

hysteresis is an asymmetric loop). Similar to the typical

static magnetic phase transition, the dynamic transition

can be both first order and second order. However, as

many parameters, such as the field parameters, the environ-

ment temperature, the system structure, influent the

lagging phenomena, the dynamic phase transition is more

complicated as it also depends on the field frequency

(whereas in the static phase transition the frequency is

zero) [14, 15]. In addition, the dynamic phase boundaries

are quite different between low and high frequencies.

Further, it is quite unlikely to find proper formalism being

able to describe how the dynamics phase boundaries

respond with changing relevant parameter. 

Consequently, in this work, we used one of the sophisti-

cate data mining techniques, i.e. the Artificial Neural

Network (ANN), in modelling the dynamic hysteresis

phase boundaries. This is as the ANN equips with the

ability to recognize pattern via ‘learning’ from experiences.

The ANN was occasionally considered in modeling mag-

netic hysteresis, but those previous works focused only on

matching particular simulated Preisach hysteresis shapes

with those from experiments [16], or predicting particular

sets of hysteresis properties. In addition, although there

are previous ANN studies concentrated on the investi-

gation of the change in the hysteresis properties and the

finding of relationship among parameters e.g. ferroelectric

experiments [17-20], magnetic experiments [21], spin

model calculation [22, 23], the use of ANN in establishing

the relationship between the dynamic-hysteresis phase-

diagrams and important perturbations across systems with

different dimension and microstructures is yet to identify.

Therefore, the main objective of this work is to provide

another step in filling the gap which may be useful for

enhancing functional magnetic related devices. 

To outline, used as an application, the ferromagnetic

Ising model (which represents very strong uniaxial aniso-

tropic magnetic system) was considered. Then, the mean-

field analysis, which reduces many body problem into a

many single body problems, was used to construct the

steady state Ising hysteresis loops. After that, with varying

the external field frequency and amplitude, temperature,

system structure from one to two dimensions and to bulk

system, the dynamic critical points were extracted. The

ANN was then performed to relate how dynamic critical

points depend on input parameters using multilayer per-

ceptron infrastructure [24, 25]. The ANN modeling was

done by varying number of hidden neurons to find the

optmized network with highest accuracy. The optimized

network was then used to draw dynamic hysteresis phase

boundaries, and compared with the real ones. Details of

the mean-field and the ANN analysis are given in the next

sections, with results detailed in the results and discussion

section, where the main finding of the work are sum-

marized and given in the conclusion section.

2. Background Theories and Methodologies

2.1. The Mean-field Extraction of Ising Hysteresis

In this work, the considered system is a ferromagnetic

system which its energy can be described using the Ising

Hamiltonian i.e.

. (1)

In Eq. (1), the spin si ±1 is the Ising spin, h(t) = h0 sin(2π

ft), f is the field frequency, h0 is the field amplitude, and

t is time. The exchange interaction Jij = J (directional

independent), telling how strong is the magnetic interac-

tion between spins, is used as the energy unit, while the

spin si is considered dimensionless. As a result, unit of

temperature T is J/kB and the unit of the field h is J. The

notation  specifies that the magnetic interaction range

covers only the nearest neighbor pairs. Next, in extracting

the hysteresis, mean-field technique was employed. In

this mean-field picture, all Ising spins experience the local

field generated by the surrounding spins, where the equation

of motion for the magnetization m (the spin representa-

tive) is given by [26]

H = −  

ij〈 〉

∑ Jijsisj −  
i

∑ h t( )si

ij〈 〉
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, (2)

where t = 1 is the spin responding time, β is the inverse

temperature i.e. 1/kBT , kB is the Boltzmann constant, and

 is the local field. By setting τ = 1 and used as the

unit of time,  is given by

. (3)

In Eq. (3), z refers to number of nearest neighboring

which in lattice language z is the coordination number. As

spins locate on atomic lattice sites in solid magnetic

materials, different z then refers different crystal structure.

Example of z and its associated system is given in Table 1.

To extract the magnetization m as a function of time t,

the mean-field Eq. (2) was solved using the fourth order

Runge-Kutta method [27]. To draw a hysteresis loop, at

least 1000 data point was found to compromise between

calculation time required and quality of the hysteresis

loop shape. Therefore, the time step for solving the

differential Eq. (2) is Δt = P/1000 where P is the period

of the external magnetic field. Next by setting initial

magnetization as m(0) = 1.0, the fourth order Runge-

Kutta (RK) was performed to draw the hysteresis loops

(the m-h relation). In each loop, the dynamic order para-

meter  (the period average magneti-

zation) was used to judge if the hysteresis has asymmetric

shape (Q ≠ 0) or symmetric shape (Q = 0). Then, the RK

procedure was repeated until the hysteresis loop arrives at

its steady state. This steady state condition can be check-

ed by the convergence of Q. For instance, whenever the

difference in Q between consecutive loops (i.e. ΔQ) is

zero, the system is now residing in its steady state and Q

is now applicable for indicating if the hysteresis has

symmetric shape (dynamic paramagnetic behavior) or

asymmetric shape (dynamic ferromagnetic behavior).

However, it is still not trivial to exactly locate the steady

state using this method because of the numerical rounding

error in computer. Further, the calculation time (human

time) required to reach steady state is very lengthy at high

frequencies. Consequently, the criteria ΔQ = 10–5 was used

to be the representative of ‘zero Q’ [14]. Smaller ΔQ do

not significantly change dynamic phase boundary results.

In this work, both the temperature (T) and field amplitude

were ranged from 0.025 to 12.0 J/kB, the field frequency

( f ) was ranged from 0.001 to 3.000 τ −1, and the coordi-

nation number z in the set {2,4,6,8,12} was used. 

Note that, these parameters and their ranges were fed

into the Artificial Neural Network for artificial-intelligent

modeling. The input parameters to the network were the

coordination numbers (representing the system structural

characteristic) as well as the field frequencies and ampli-

tudes (representing the rate and strength of the external

field perturbation), where the output parameter was the

temperatures T at the dynamical critical boundaries. This

so called dynamic critical temperature T is important to

specify the dynamic hysteresis behavior of the ferromagnetic

system. For temperatures larger than this critical T, the

hysteresis loop has symmetric shape whereas for temper-

atures lower than this critical T, the hysteresis loop has

asymmetric shape. As can be seen, this dynamic critical

temperature T is crucial in the fundamental understating

of hysteresis phenomena which suggest the range of operat-

ing conditions for magnetic application for avoiding the

undesired asymmetric hysteresis properties. Therefore, the

dynamic critical temperature T was chosen as the important

output to be modeled by the Artificial Neural Network.

2.2. Artificial Neural Network

The Artificial Neural Network (ANN) is a data mining

technique which mimics how the human brain functions

in recognizing patterns via experiencing and learning.

Therefore, it can be used to establish connections among

inputs and outputs of the considered datasets. In brief, the

ANN consists of many processing elements (called neurons),

connected together. In multilayer perceptron infrastructure

[24, 25], neurons reside in input layer, hidden layers and

the output layer. Then ANN in trained to realize relation-

ship by varying weights or the strength of the connection

among pairs of neurons. During the training, sets of input-

output data are fed to the network while the weights are

adjusted to minimize the error between the predicted

outputs and the desired outputs (targets). Once the error

becomes minimal, the network is successfully trained and

can now be used to predict outputs for any unseen inputs. 

In general, the weight is adjusted using some learning

algorithms, where in this work, the Back Propagation

(BP) learning algorithm [28] was used in the training. The

BP learning algorithm can be described as the following

[24]. Firstly, inputs are supplied to the neurons in the

τ
dm t( )

dt
-------------- = −m t( ) + tanhβ E〈 〉

E〈 〉

β E〈 〉

β E〈 〉  = 
zJm t( ) + h t( )

kBT
---------------------------------

Q = 
1

period
---------------  

period

∫ m t( )dt

Table 1. Example of the coordination number for some crystal

structures.

Dimension Crystal structure Coordination number (z)

1 Chain 2

2 Square lattice 4

2 Triangular lattice 6

3 Simple cubic 6

3 Body centered cubic 8

3 Face centered cubic 12
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input layer. Then, the weighted sum , calculated

from all neural i in the current layer, is prepared for the

neuron j in the next layer. In the sum, ki is the input to the

neuron i, and wij is the weight from neural i to neural j.

After that, the sigmoid transfer function, i.e. 

where x = Sj, is applied on the sum Sj. This g(x = Sj) then

becomes the output of neuron i or the input to neuron j.

This procedure repeats for all neuron-neuron connections

in both input and hidden layers. After that, an error is

calculated to adjust the weight for each neuron. For the

output layer, the error takes the form 

while in the hidden layer the error takes the form

. In these equations, tj is the target value

for neuron j, aj is the output value for neuron j, g'(x) is the

first-order derivative of the g, Sj is weighted sum of inputs

to neuron j, and the weight adjustment is calculated from

 where η is the learning rate. All these pro-

cesses get repeated with new input sets until stopping

criteria are met.

3. Results and Discussions

With vary the field parameters (i.e. f, h0), the temperature

T and the coordination number z, intriguing hysteresis

behavior has been found as shown in Fig. 1. In the figure,

the hysteresis dependence on the input perturbation is

rather strong. With increasing z and f in Fig. 1(a, b), the

hysteresis loops change from symmetric to asymmetric

behavior. This is expected as the increase in z yields

stronger ferromagnetic interaction per spin (as there are

more nearest neighboring) while the increase in f means

the increase of field sweeping rate per period. These two

cases obviously enhance the lagging effect so less sym-

metric behavior is the result.

On the other hand, with increasing the field amplitude

h0 and the environment temperature T in Fig. 1(c, d), the

Sj =  
i
∑ kiwij

g x( ) = 
1

1 e
x–

+
-------------

δj = tj aj–( )g′ Sj( )

δj =  
i
∑ δkwkj g′ Sj( )

Δwji = ηδjai

Fig. 1. The Ising hysteresis loops (m-h relationship) obtained from solving Eq. (1) via the mean-field analysis with varying (a)

coordination number z, (b) field frequency f, field amplitude h0 and (d) temperature T. In (a) f = 0.01 τ −1, h0 = 3 J and T = 3 J/kB.

In (b) z = 2, h0 = 0.5 J and T = 1.5 J/kB. In (c) z = 4, f = 0.03 τ −1, T = 2 J/kB. In (d) z = 12, f = 0.07 τ −1 and h0 = 4 J.
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hysteresis loops change from asymmetric to symmetric

behavior. This is as on increasing the amplitude implies

supplying more magnetic driving force into the system,

while the increase in T enhances thermal fluctuation among

spins which compensates the spin interaction. These two

h0 and T contributions then allow the spin more mobility

to follow the field changing so the lagging effect reduces.

Therefore, the symmetric behavior becomes more pro-

minent on increasing h0 and T. These results are in good

agreement with previous applicable investigations [9, 14].

With a focus on the symmetric and asymmetric behavior

of the hysteresis loops, the period average magnetization

Q was investigated in details. Example of the Q results

can be shown as in Fig. 2 where in Fig. 2(a) the amplitude

h0 was varied, but in Fig. 2(b) the frequency f was varied.

As can be seen, the dynamic hysteresis phase transition

temperature (the lowest temperature that gives ‘zero’ Q)

shifts to higher temperature with increasing f and z, but

with reducing h0. These results agree well with the results

in Fig. 1 where the lagging phenomenon is the reason

behind.

Next, by recording the dynamic transition temperature

T for various f, h0 and z, the dynamic hysteresis phase-

diagram can be defined. Example of the diagram for z = 6

can be shown as in Fig. 3. In the figure, there exist

boundary lines where each line consists of the dynamic

phase boundary data collected from a same field frequency

f. The line was drawn using cubic-spline interpolation,

where the region below the line refers to sets of (T, h0)

that gives asymmetric hysteresis loops (dynamic ferromag-

netic phase) but those above the line gives symmetric

hysteresis loops (dynamic paramagnetic phase). Also, the

boundary lines move upwards with increasing the fre-

quency f as more thermodynamic energy or magnetic work

are required to overcome the increase of lagging effect

due to higher field sweeping rate. However, formulating

some function that could relate T, h0, and f on the dynamic

boundaries is not trivial as each dynamic boundary has

Fig. 2. The period average magnetization Q as a function of temperature T with varying (a) field amplitude h0 and (b) field fre-

quency f for z = 6 and 12 systems. In (a) f was fixed at 0.01 τ −1 and in (b) h0 was fixed at 2 J.

Fig. 3. The dynamic hysteresis phase-diagram for z = 6 Ising

hysteresis loops. Each line (drawn by using cubic spline inter-

polation) in the figure links the phase boundary data extracted

from different field frequency. Sets of (h0, T) below a partic-

ular curly line belong to the dynamic ferromagnetic phase

while those above the line belong to the dynamic paramag-

netic phase. Specifically, points A and C are examples of

(T, h0) that are in dynamic ferromagnetic and dynamic para-

magnetic phases (for all considered frequencies), respectively,

where are point B resides in either ferro- or para-phases

depending on the considered frequencies.
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different characteristic and strongly depend on the range

of f. Furthermore, although different z share the same

qualitative results (similar trends), the quantitative results

are somewhat different, i.e. the enhanced level of h0 and

T. Therefore, this even brings more complication into the

scaling. Consequently, the ANN was introduced to fill

this scaling gap.

However, before starting the ANN procedure, data verify-

ing and cleansing is typically a first step to do to maxi-

mize the best use of the ANN modeling. With careful

attention on the provided data, it was found that there is

somewhat low number of data contributed to the unusual

pattern of data. For instance, considering data for f = 1.0

and 3.0 τ−1 in Fig. 3, unusual trend was found on increas-

ing h0 i.e. the drop of T is rather slow at low h0, become

great at intermediate h0 and change to a slow drop again

at high h0. In addition, the range of f is not uniformly

distributed but rather increases in an exponential pattern.

Therefore, there are some regions of the parameters that

the ANN will have less experiences so the ANN may not

function well over the whole considered range. As a result,

the input-output data were considered in logarithmic scale

to allow the more uniformity of the data distribution, and

then scaled into the same range. In addition, since z is

indeed a discrete variable where different z refers different

structure, therefore z was treated as a category type. Details

of the data cleansing and categorizing is shown in Table 2.

After all data have been scaled, the inputs (which are z,

h0 and f ) and output (which is T) were fed to the ANN.

The number of hidden layers and nodes were varied to

obtain the network with highest accuracy. The search was

carried out for up to 2 hidden layers and up to 40 nodes in

each hidden layer. The results of best network are

7:38:14:1. Note that the network was displayed as 4

numbers which indicate number of neurons in input, first

hidden, second hidden, and output layers, respectively.

Schematic diagram showing the used ANN network can

be found in Fig. 4.

In ANN training process, dataset were separated into

training, validating, and testing datasets at the ratios 0.6,

0.16, and 0.16 respectively. Note that the training datasets

were used to train the network, validating datasets were

used to prevent overtraining, and testing datasets were

used to test the network accuracy. In this work, 1100

datasets were separated to 748, 176, and 176 datasets,

where the ANN accuracy was judged from mean absolute

error (MAE) and the coefficient of determination (R2; R-

square) i.e.

MAE =  and 

. (4)

In Eq. (4), fi is the ANN predicted output, yi is the

actual target, and n is the total number of dataset used.

Note that the lower of the MAE and the closer of the R2

to 1 are preferable to guarantee the accuracy of the

network. The results for both MAE and R2 are presented

in Table 3. As can be seen, the MAE obtained is low, e.g.

0.0226 from the testing data. In addition, R2 = 0.9954 for

the testing data is very close to 1. This indicates that the

proposed ANN model is reliable. For a visual presentation,

the target and the ANN predicted outputs were plotted

and compared as shown in Fig. 5. As can be seen, both

outputs match very as the scattering plot between the

predicted and target outputs almost fall into a linear line

Σi=1

n
fi yi–

n
--------------------------

R = 
nΣi=1

n
fi yi− Σi=1

n
fi( ) Σi=1

n
yi( )

n Σi=1

n
f i

2
( )− Σi=1

n
fi( )

2

n Σi=1

n
yi

2
( )− Σi=1

n
yi( )

2

--------------------------------------------------------------------------------------------------------

Table 2. The range of input and output data used in the ANN training.

Symbol Description Type
Input or 

output
Actual range

Scaling 

range

Scaling 

factor

z Coordination number (number of nearest neighbor spins) Category Input 2, 4, 6, 8, and 12 N/A N/A

log10( f ) Logarithmic frequency (base 10) Numeric Input −3 to 0.477121 [−1, 1] 0.575188

log10(h0) Logarithmic amplitude (base 10) Numeric Input −1.60206 to 1.07918 [−1, 1] 0.745923

log10(T) Logarithmic temperature (base 10) Numeric Output −2 to 1.08063 [0,1] 0.324609

Fig. 4. (Color online) The schematic diagram of the ANN net-

work.
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with R2 > 0.9968. 

To compare the predicted results on the dynamic phase-

diagram, the ANN prediction of the phase-boundaries

were drawn and shown in Fig. 6. The discrete data points

in the figure are from the target output while curves

passing data points are from ANN prediction. As is seen,

good agreement is found even using data from different

systems (different z) in modeling altogether. This therefore

indicates the high accuracy of the constructed ANN model

in predicting dynamic phase-diagram of the hysteresis

phenomena. This work therefore shows the success of

using the ANN in modeling ferromagnetic hysteresis over

an extensive range of magnetic field parameters even from

different crystalline structures. 

4. Conclusion

In this work, the Artificial Neural Network was used to

model dynamic hysteresis phenomena especially its dynamic

critical behavior using hysteresis data derived from mean-

field extraction of the Ising magnetization equation of

motion. The Neural Network was trained to relate the

coordination number of the system, the field amplitude

and the field frequency, to the dynamic critical temperature

(i.e. the dynamic phase boundary reconstruction). From

the Neural Network training, the best network was achieved

and used to generate the predicting output in benchmark-

ing with the real target output. From the scrutinizing,

outputs were found to agree well over the extensive range

of considered parameters. Therefore, this work illustrates

the validities of using the Artificial Neural Network in

concurrent modeling dynamic ferromagnetic phase transition

phenomena with diverse crystalline structures.
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