• Title/Summary/Keyword: Number of cyclic loading

Search Result 158, Processing Time 0.028 seconds

A New Method of Liquefaction Evaluation Based on Disturbed State Concept (교란상태개념에 기초한 새로운 액상화 평가 방법)

  • 박인준;김수일
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.45-55
    • /
    • 1998
  • Although a number of methods have been proposed to predict the liquefaction potential, few methods have been developed by using the characteristic of material's microstructure. In this research, fundamental procedure is proposed for the assessment of liquefaction potential in saturated soils based on the Disturbed Sate Concept(DSC) model which can provide a unified constitutive model for the characterization of entire stress-strain behavior under cyclic loading. From this concept, the value of disturbance at threshold state (Critical Disturbance, $D_C$) in the deforming microstructure provides the basis for initial liquefaction. This method is verified with respect to data from Cyclic Truly Triaxial test for saturated Ottawa sand. Also, the relationship between liquefaction and initial confinig stress is defined using definition of $D_C$. It is believed that the new procedure for identifying liquefaction based on the DSC model can capture the behavior of liquefation, and as a result, it is shown to be on improvement over the available empirical procedures.

  • PDF

Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading (반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구)

  • Lee, Ho;Jung, Hwoan-Mok;Cha, Byung-Gi;Byun, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • This paper experimentally evaluates the strength characteristics of precast column-R.C. foundation anchor joint subjected to the cyclic horizontal load. The study presents differences in accurate stress transfer path and destruction mechanism between the concrete structural body applying the precast column-R.C. foundation anchor joint and the concrete structural body applying the steel joint. the result from width load experiment on reinforcing steel under the cyclic horizontal load provides the necessary minimum insertion length to construct the precast column-R.C. foundation anchor joint. This study also presents the accurate stress transfer path and destruction mechanism on the anchor joint th meet the customer's requirements, comparing stress transfer path and destruction mechanism provided by the experiment and those provided by the product manual. Eventually, this study presents all the necessary fundamental data to provide the construction design with accurate number of reinforcing steel, diameter of the steel, fixation length of the steel, etc. to build the optimum precast concrete column.

  • PDF

Deformation Characteristics of Crushed Rock-Soil Mixtures of Railway Subgrade under Train Cyclic Loadings (암과 흙 혼합재료로 이루어진 철도노반의 열차 반복하중 작용에 의한 변형특성)

  • Kim, Dae-Sang;Park, Seong-Yong;Lee, Yong-Il;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.955-963
    • /
    • 2008
  • There are lots of tunnel intervals in the KTX II stage construction line for the linearity of railway line passing mountain region. In order to use the rocks from tunnel excavations, railway subgrades are constructed with crushed rock-soil mixtures. In this study, plain strain test using large scale box was conducted in order to analyze the characteristics of deformation behavior of railway subgrades composed of crushed rock-soil mixtures. The effects of variation of degree of saturation, stress level of applied loadings, and number of loading cycles on the resilient and permanent deformation behavior were analyzed. The results show that degree of saturation have a great effect on the deformation behavior of crushed rock-soil mixtures. The axial strain ranges between $0.1{\sim}0.8%$ with variation of degree of saturation, in assumption that deviatoric stress applied on the subgrade by high-speed train load is 55kPa.

  • PDF

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

Initial Lengthening Behavior of Cadaveric Achilles Tendon Graft After Posterior Cruciate Ligament Reconstruction (후방십자인대 재건술 후 사체 아킬레스 이식건의 초기연신거동)

  • Kim, Cheol-Woong;Bae, Ji-Hoon;Lee, Ho-Sang;Wang, Joon-Ho;Park, Jong-Woong;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1461-1466
    • /
    • 2008
  • In the case of Posterior Cruciate Ligament (PCL), the most frequent mechanism is the dashboard injury, which is directly pressurized to the anterior of the proximal tibia in the state of the knee hyperflexion. The PCL associated ligament damage happens when the posterior injury, the varus, the valgus, the hyperextension and the severe vagus torque are out of the critical value of PCL. After the successful operation cases of Anterior Cruciate Ligament (ACL) reconstruction using the allograft were informed from 1986, a number of results kept over the maximum 10 years were reported. Unfortunately, PCL reconstruction are crowded the surgery techniques such as the graft, the tibia fixing method, the fixation device, the location of the femoral tunnel, the number of the graft bundles and PCL reconstruction to access to the stability of the normal joint is being developed. Therefore, this study is the basic research of these above facts. The current transtibial tunnel surgery using the cadaveric Achilles tendon grafts is chosen for the various PCL reconstruction. The initial extension of the Achilles tendon by the fixing device and its location under the cyclic loading, were observed.

  • PDF

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

Evaluation of Residual Strains under Pure Bending Loading for Colorless and Optically Transparent Polyimide Film for Flexible Display (유연 디스플레이용 무색 투명 폴리이미드 필름의 굽힘 잔류 변형률 평가)

  • Choi, Min-Sung;Park, Min-Seok;Park, Han-Yeong;Oh, Chung-Seog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.49-54
    • /
    • 2021
  • The display industry is transitioning from traditional rigid products such as flat panel displays to flexible or wearable ones designed to be folded or rolled. Accordingly, colorless and optically transparent polyimide (CPI) films are one of the prime candidates to substitute traditional cover glass as a passivation layer to accommodate product flexibility. However, CPI films subjected to repetitive pure bending loads inevitably entail an accumulation of residual strain that can eventually cause wrinkles or delamination in the underlying component after a certain number of static and cyclic loading. The purpose of this study is to establish an experimental method to systematically evaluate the bending residual strain of CPI films. Films were monotonically and cyclically wrapped on mandrels of various diameters to ensure a constant strain in each. After unwrapping the wound CPI film, the residual radius of curvature remaining on the film was measured and converted into residual strain. The critical radius of curvature at which residual strain does not remain was about 5 mm, and the residual strain decreased in proportion to the log time. It is expected that flexible displays can be reliably designed using the data between the applied bending strain and the residual strain.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.