• Title/Summary/Keyword: Nugget Size

Search Result 54, Processing Time 0.03 seconds

Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W (Al 7075의 마찰교반 용접부 특성에 관한 연구)

  • Jang, Seok-Ki;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.348-358
    • /
    • 2005
  • This paper showed mechanical properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool with 6.35$mm_t$ aluminum 7075-T651alloy plate. It resulted in defect-free weld zone in case tool rotation speed was 800rpm, 1250rpm and 1600rpm respectively that transition speed was changed to 15mm/min, 61mm/min and 124mm/min with tool's pin diameter 4${\Phi}$mm and 6${\Phi}$mm. The optimum mechanical property, ultimate stress,${\sigma}_Y$=470Mpa was obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin, shoulder dia. 20${\Phi}$mm, pin dia.6${\Phi}$mm and pin length 6mm. The full-screw type and the half-screw type pin showed the similar behaviors of weldability. It is found that the size of nugget was depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

  • PDF

Effects of Electrode Shape on Electrode Life of Resistance Spot Welding of Mg Alloy (Mg 합금 저항 점 용접의 연속 타점 수명에 미치는 전극 형상의 영향)

  • Choi, Dongsoon;Kang, Moonjin;Ryu, Jaewook;Kim, Dongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.30-35
    • /
    • 2014
  • According to weight lightning trend of automobile body, necessity of resistance spot welding (RSW) of Mg alloy on automobile industry is increasing rapidly because of the highest specific strength among commercial metals. Mg alloy has low electric resistance and high thermal conductivity like as Al alloy, so that needs applying high current in short time when welding. Thick oxide film of Mg alloy pollutes the electrodes and makes partial current carrying paths when on welding. Partial current carrying paths signify excessive concentration of current. There can initiate expulsion easily and reduces electrode life rapidly. Generating partial current carrying paths and expulsions are influenced by shapes of electrode. Therefore, electrode life also influenced by shape. In this study, we perform life test of RSW electrode of radius type. Measure tensile shear load and nugget size every spot alternately. As a result, radius type electrode can extend life over twice as dome type electrode.

Effect of Coating Layer on Electrode Life for Resistance Spot Welding of Al-Coated Hpf and Zn-Coated Trip Steels (Al 도금 HPF 강판과 전기아연도금 TRIP 강판의 저항 점 용접 시 연속타점 전극의 수명에 미치는 도금층의 영향)

  • Son, Jong Woo;Seo, Jong-Dock;Kim, Dong Cheol;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • The resistance spot welding of high strength steel degrades the weldability because of its high strength with rich chemical composition and coating layer to protect from corrosion. During the each resistance welding process the electrodes tip reacts with coating layer, then subsequently deteriorates and shorten electrode life. In this study, the Al-coated HPF (Hot Press Forming) steels and Zn-coated TRIP steels were used to investigate the electrode life for resistance spot welding. Experimental results show that the reactivity of Al-coating on HPF steels to electrode tip surface behaviors different from the conventional Zn-coated high strength steels. The electrode tip diameter and nugget size in electrode life test of Al-coated HPF steels are observed to be constant with respect to weld numbers. For Al-coated HPF steels, the hard aluminum oxide layer being formed during high temperature heat treatment process reduces reactivity with copper electrode during the resistance welding process. Eventually, the electrode life in resistance spot welding of Al-coated HPF steels has the advantage over the galvanized steel sheets.

Resistance Spot Weldability of Low Density Lightweight Steel according to Electrode Shape (전극 형상에 따른 저비중 경량강판의 저항 점 용접 특성)

  • Hwang, Insung;Yoon, Hyunsang;Kim, Dongcheol;Kang, Munjin;Kim, Jae Do;Kim, Young-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.52-57
    • /
    • 2017
  • In this study, resistance spot weldability of lightweight steel with high Al contents was evaluated using various electrode shapes. The six types of electrode shape were prepared with different electrode face diameter and radius. The tensile shear tests were carried out to investigate the failure behaviors. Also, the nugget size and hardness were measured and compared with various electrode shapes. The experimental results show that the acceptable weld current region for low density lightweight steel could be obtained with 10mm electrode face diameter and 76mm electrode face radius.

Selection of Optimum Fulcrum Type for Measurement and Geo-statistical Analyze of Elevation within Rice Paddy Field (수도작 포장의 고저차 측정을 위한 최적 받침대 선정)

  • Sung J. H.;Jang S. W.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.268-273
    • /
    • 2005
  • This study was conducted to investigate the specificities of four fulcrum types for geo-statistical analysis of elevation within rice paddy field. In Korea, the spaces between inter-rows and between hills for rice transplanting are 30cm and 11cm to 14cm, respectively. So, the size and shape of fulcrum for field elevation measurement should be considered according to the inter-row and the hill spaces. Four kinds of fulcrum were chosen such as round-shape with 2.5cm diameter, circular-shape with 10cm diameter, 10cm (one third of inter-row space) by 24cm (double of hill space) rectangular-shape, and 20cm (two-thirds of inter-row space) by 24cm rectangular-shape. The resulting descriptive statistics couldn't determine the best fulcrum type to measure the rice paddy field elevation. But the results of geo-statistical analysis could determine the best fulcrum type. In the case of 10cm by 24cm rectangular-shape fulcrum, Nugget and range, meaning measurement error and/or noise, and limit of spatial connection, respectively, were minimum; Q value meaning weight of spatial structure and $r^2$ value were minimum, and residual sum of squares was minimum. It means that 10cm by 24 cm rectangular-shape fulcrum could best describe the rice paddy field elevation.

A Survey of Globular Cluster Systems of Massive Compact Elliptical Galaxies in the Local Universe

  • Kang, Jisu;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.32.2-32.2
    • /
    • 2020
  • Massive Compact Elliptical Galaxies (MCEGs) found in the local universe are as massive as normal galaxies but extremely compact (M∗ > 1011 Msun, Reff < 1.5 kpc). They are considered to be the relics of red nugget galaxies found at high redshift. They are not likely to have undergone many mergers, keeping their original mass and size. Moreover, it is expected that they host a dominant population of red (metal-rich) globular clusters rather than blue (metal-poor) ones. Indeed, Beasley et al. (2018) found that the color distribution of the cluster system of NGC 1277 is unimodal, showing only a red population. However, NGC 1277 is the only case whose cluster system was studied among MCEGs. In this study, we investigate globular cluster systems of 14 nearby MCEGs with a homogeneous data set of HST/WFC3 F814W/F160W archive images. We detect tens to hundreds of globular clusters in each galaxy and examine their color distributions. Surprisingly, the fractions of red globular clusters are similar to those of normal galaxies, and are much lower than that of NGC 1277. We additionally obtain Gemini/GMOS-N g'r'i' images of PGC 70520, one of the 14 nearby MCEGs, to detect more globular clusters from deeper and wider images. We will discuss the results from the Gemini data combined with the results from the HST data in relation with the formation of MCEGs.

  • PDF

A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method ($CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

A Comparative Study of Weldable Current Range on AC and MFDC Resistance Spot Welding for 440 MPa Grade Steel Sheet (440 MPa급 도금강판의 저항 점 용접 시 AC 및 MFDC전원에 따른 가용전류구간 비교 연구)

  • Ji, Changwook;Park, Chansu;Kim, Chiho;Cho, Yongjoon;Oh, Dongjin;Kim, Myung-Hyun;Kim, Yang-Do;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • This paper presents a comparative study of the AC and MFDC resistance spot welding process with consideration of sheet thickness. The previous studies have confirmed that there is difference in the optimum welding current and expulsion current with AC and MFDC. The aim of this study was revealing the effect of sheet thickness on weldable current range and expulsion behavior for AC and MFDC welding processes. The optimum welding current of AC was lower (1.6 kA) than MFDC welding process in 0.8 mm sheet thickness. Early nugget growth being caused by the peak current of AC developed weld interface deformation, which resulted in suppressing the growth of corona bond and occurrence of low current expulsion. The resistance spot welding for thicker sheet (1.4 mm) required lower current of 0.6 kA for the expulsion on the MFDC welding process. The growth of contact diameter (size of corona bond) and button diameter was linear up to the expulsion current with MFDC welding process. Therefore, more attention is required when the AC and MFDC resistance spot welding process is applied for different thickness of steel sheet combination for automotive application.

Spatial Variability for Particle Size Distribution of Two Soils -II. Fitting Variogram Models and Kriging (토양(土壤)의 입경분포(粒徑分布)에 대(對)한 공간변이성(空間變異性) 분석(分析) -II. 입경공간변이성(粒徑空間變異性)의 Variogram 적합(適合)과 Kriging)

  • Park, Cang-Seo;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.319-324
    • /
    • 1984
  • Spatial variability of sand, silt, and clay contents on Hwadong SiCL and Jungdong SL was studied by using geostatistical concept. The measurements were made within a $33{\times}14m^2$ area at the nodes of 2 by 2m grids. The validity of all assumptions (stationarity, variogram models, etc.) was proved by Jack-knifing procedure and frequency distribution performed on the original data grids. The variogram of sand content on Hwadong SiCL was different from the linear model and that of clay content of Jungdong SL the linear and the spherical model in calculation of both kriged values and kriged variances in identification of its choice for simplicity.

  • PDF

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.