• Title/Summary/Keyword: Nuclide

Search Result 220, Processing Time 0.026 seconds

An Adaptation of the SAV Standard Nuclide Chain for the CASMO3/MEDIUM3 Procedure (CASMO3/MEDIUM3 계산절차를 위한 SAV의 표준 핵종 연쇄모델의 수정)

  • Lee, Chang-Ho;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.247-256
    • /
    • 1994
  • The nuclide chain model used in SAV90 has been modified for the CASMO3/MEDIUM3 procedure. Since the default nuclide chain in SAV90, using 21 nuclides, is not sufficient to reproduce the CASMO3 results in the MEDIUM3 calculation, the extended nuclide chain models have been investigated and verified with various types of fuel assemblies. Among the extended nuclide chain models proposed, the 22 nuclide chain model, which contains only Pu238 additionally to the 21 nuclide chain, is recommended in terms of both accuracy and computing efficiency. Using this model core follow calculations for YGN-1 have been performed. The results showed good performance when compared to plant measurements.

  • PDF

Development of High-Sensitivity and Entry-Level Nuclide Analysis Module (고감도 보급형 핵종 분석 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.515-519
    • /
    • 2022
  • In this paper, we propose the development of a high-sensitivity entry-level nuclide analysis module. The proposed measurement sensor module consists of an electronic driving circuit for nuclide analysis resolution, prototype production with nuclide analysis function, and GUI development applied to prototypes. The electronic part driving circuit for nuclide analysis resolution is divided into nuclide analysis resolution process by the electronic part driving circuit block diagram, MCU circuit design used for radiation measurement, and PC program design for Spectrum acquisition. Prototyping with nuclide analysis function is made by adding a 128×128 pixel OLED display, three buttons for operation, a Li-ion battery, and a USB-C type port for charging the battery. The GUI development department applied to the prototype develops the screen composition such as the current time, elapsed measurement time, total count, and nuclide Spectrum. To evaluate the performance of the proposed measurement sensor module, an expert witness test was conducted. As a result of the test, it was confirmed that the calculated result by applying the resolution formula to the Spectrum (FWHM@662keV) obtained using the Cs-137 standard source in the nuclide analysis device had a resolution of 17.77%. Therefore, it was confirmed that the nuclide analysis resolution method proposed in this paper produces improved performance while being cheaper than the existing commercial nuclide analysis module.

A Nuclide Transfer Model for Barriers of the Seabed Repository Using Response Function (응답함수를 이용한 해저처분장의 방벽에 대한 핵종전달 모델)

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • A nuclide transfer by utilizing mass transfer coefficient and barrier response function defined for each barrier is proposed, by which the final nuclide transfer rate into the sea water can be evaluated. When simple and immediate quantification of the nuclide release is necessary in the conservative aspect, using this kind of approach may be advantageous since each layered barrier can be treated separately from other media in series in the repository system, making it possible to apply separate solutions in succession to other various media. Although one disadvantage is that while flux continuity can be maintained at the interface by using the exit nuclide flux from the first medium as the source flux for the next one, there may be no guarantee for concentration continuity, this problem could be eliminated assuming that there is no boundary resistance to mass transfer across the interface. Mass transfer coefficient can be determined by the assumption that the nuclide concentration gradient at the interface between adjacent barriers remains constant and barrier response function is obtained from an analytical expression for nuclide flow rate out of each barrier in response to a unit impulse into the barrier multiplied by mass transfer coefficient. Total time-dependent nuclide transfer rate from the barrier can then be obtained by convoluting the response function for the barrier with a previously calculated set of time-varying input of nuclide flow rate for the previous barrier.

  • PDF

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

NEW DEVELOPMENT OF HYPERGAM AND ITS TEST OF PERFORMANCE FOR γ-RAY SPECTRUM ANALYSIS

  • Park, B.G.;Choi, H.D.;Park, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.781-790
    • /
    • 2012
  • The HyperGam program was developed for the analysis of complex HPGe ${\gamma}$-ray spectra. The previous version of HyperGam was mainly limited to the analysis of ${\gamma}$-ray peaks and the manual logging of the result. In this study, it is specifically developed into a tool for the isotopic analysis of spectra. The newly developed features include nuclide identification and activity determination. An algorithm for nuclide identification was developed to identify the peaks in the spectrum by considering the yield, efficiency, energy and peak area for the ${\gamma}$-ray lines emitted from the radionuclide. The detailed performance of nuclide identification and activity determination was accessed using the IAEA 2002 set of test spectra. By analyzing the test spectra, the numbers of radionuclides identified truly (true hit), falsely (false hit) or missed (misses) were counted and compared with the results from the IAEA 2002 tests. The determined activities of the radionuclides were also compared for four test spectra of several samples. The result of the performance test is promising in comparison with those of the well-known software packages for ${\gamma}$-ray spectrum analysis.

Nuclide composition non-uniformity in used nuclear fuel for considerations in pyroprocessing safeguards

  • Woo, Seung Min;Chirayath, Sunil S.;Fratoni, Massimiliano
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1120-1130
    • /
    • 2018
  • An analysis of a pyroprocessing safeguards methodology employing the Pu-to-$^{244}Cm$ ratio is presented. The analysis includes characterization of representative used nuclear fuel assemblies with respect to computed nuclide composition. The nuclide composition data computationally generated is appropriately reformatted to correspond with the material conditions after each step in the head-end stage of pyroprocessing. Uncertainty in the Pu-to-$^{244}Cm$ ratio is evaluated using the Geary-Hinkley transformation method. This is because the Pu-to-$^{244}Cm$ ratio is a Cauchy distribution since it is the ratio of two normally distributed random variables. The calculated uncertainty of the Pu-to-$^{244}Cm$ ratio is propagated through the mass flow stream in the pyroprocessing steps. Finally, the probability of Type-I error for the plutonium Material Unaccounted For (MUF) is evaluated by the hypothesis testing method as a function of the sizes of powder particles and granules, which are dominant parameters to determine the sample size. The results show the probability of Type-I error is occasionally greater than 5%. However, increasing granule sample sizes could surmount the weakness of material accounting because of the non-uniformity of nuclide composition.

Explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping

  • Yu Wang;Qingxu Yao;Quanhu Zhang;He Zhang;Yunfeng Lu;Qimeng Fan;Nan Jiang;Wangtao Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4684-4692
    • /
    • 2022
  • Radionuclide identification is an important part of the nuclear material identification system. The development of artificial intelligence and machine learning has made nuclide identification rapid and automatic. However, many methods directly use existing deep learning models to analyze the gamma-ray spectrum, which lacks interpretability for researchers. This study proposes an explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping. This method shows the area of interest of the neural network on the gamma-ray spectrum by generating a class activation map. We analyzed the class activation map of the gamma-ray spectrum of different types, different gross counts, and different signal-to-noise ratios. The results show that the convolutional neural network attempted to learn the relationship between the input gamma-ray spectrum and the nuclide type, and could identify the nuclide based on the photoelectric peak and Compton edge. Furthermore, the results explain why the neural network could identify gamma-ray spectra with low counts and low signal-to-noise ratios. Thus, the findings improve researchers' confidence in the ability of neural networks to identify nuclides and promote the application of artificial intelligence methods in the field of nuclide identification.

Nuclide Identification of Gamma Ray Energy Peaks from an Air Sample for the Emergency Radiation Monitoring (비상시 환경방사능 모니터링을 위한 공기부유진 시료의 감마선에너지 스펙트럼에 대한 핵종판별)

  • Byun, Jong-In;Yoon, Seok-Won;Choi, Hee-Yeoul;Yim, Seong-A;Lee, Dong-Myung;Yun, Ju-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.170-175
    • /
    • 2009
  • For the emergency radiation monitoring using gamma spectrometry, we should sufficiently survey the background spectra as environmental samples with systematic nuclide identification method. In this study, we obtained the gamma ray energy spectrum using a HPGe gamma spectrometry system from an air sample. And we identified nuclide of the gamma ray energy peaks in the spectrum using two methods -1) Half life calculation and 2) survey for cascade coincidence summing peaks using nuclear data. As the results, we produced the nuclide identification results for the air sample.

Nuclide Release from Penetrations in Radioactive Waste Container (방사성 폐기물 저장용기 표면의 결함으로부터 핵종유출 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.302-307
    • /
    • 1989
  • Nuclide release through penetrations in radioactive waste container is analyzed. Penetrations may result from corrosion or cracking and may be through the container material or through deposits of corrosion products. The analysis deals with the resultant nuclide release, but not with the way these penetrations occur. Numerical illustrations show that mass transport from multiple holes can be significant and may approach the mass transfer rate calculated from bare waste forms. Although partially-failed containers may present an important long-term barrier to release of radionuclides, numerous small holes on a container surface have the potential of bypassing the effectiveness of these barriers.

  • PDF

Two-Dimensional Nuclide Transport Around a HLW Repository

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hwang, Yong-Soo;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.432-443
    • /
    • 1999
  • Using a two-dimensional numerical model, nuclide transport in the buffer between the canister and adjacent rock in a high-level radioactive waste repository is dealt with. Calculations are made for a typical case with a three-member decay chain, $^{234}$ U longrightarrow $^{230}$ Th longrightarrow $^{226}$ Ra. The solution method used here is based on a physically exact formulation by a control volume method directly integrating the governing equation over each control volume.

  • PDF