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Abstract

Using a two-dimensional numerical model, nuclide transport in the buffer between the

canister and adjacent rock in a high-level radicactive waste repository is dealt with. Calculations

are made for a typical case with a three-member decay chain, 2'U — #*Th — %%Ra. The

solution method used here is based on a physically exact formulation by a control volume

method directly integrating the governing equation over each control volume.
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Notation

2b = fracture aperture, (L]
b = super- and subscripts denoting the buffer
b,p = super- and subscripts denoting the buffer or
matrix
At ) = concentration of nuclide! at the inlet, [ML?]
Ck, Cw, CN, Cs, Cp = concentrations at each grid
point as shown in Figs. 3 and 4, {ML?]
¢ ) = concentration of nuclide I, [ML3)
¢ ? = initial concentration of nuclide | at the inlet,
ML?]
D * = molecular diffusion coefficient in water, [L>T"]
D, s = interface diffusion coefficient through the
buffer-fracture interface as defined in Eq.
(A15), [L*T]
D,_., = interface diffusion coefficient through the
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buffer-matrix interface as defined in Eq.
(A14), [L*T]

Dy_, = interface diffusion coefficient through the
fracture wall between the fracture and the
matrix as defined in Eq. (A13), [L*T]

D, =longitudinal hydrodynamic dispersion -

coefficient in the fracture, further expressed
v+D*, [L7TY

(D), = longitudinal hydrodynamic dispersion

as D =a; -

coefficient through control volume face n,
LT

(Dy)s = longitudinal hydrodynamic dispersion
coefficient through control volume face s,
(LT

Dr = transverse hydrodynamic dispersion

coefficient in the fracture, [L?T]
e, w, n, s = control volume faces as defined in
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Figs. 3 and 4
E,W N, S, P = subscripts for grid point
concentration as shown in Figs. 3 and 4
J = total flux in the fracture as defined in Eq. (A1),
IML?T|
K. = distribution coefficient for nuclide I, [L3M]
I = subscript denoting parent nuclide
I-1 = subscript denoting daughter nuclide
p = super- and subscripts denoting the matrix
R, = retardation coefficient in the fracture for
nuclide [
R P = retardation coefficient in the buffer for nuclide /
RP= retardation coefficient in the matrix for
nuclide |
t = elapsed time, [T]
t o5 = half-life of nuclide, [T]
v = groundwater velocity in the fracture, [LT"]
x, y = coordinates as defined in Fig. 1, [L]
xm = half of fracture spacing (see Fig. 2), [L]
yp'= distance to the buffer-rock boundary (buffer
thickness), [L]
v = distance to the outlet boundary, [L]
a; = dispersivity along the fracture, [L]
(8%)e, (8x ), By)s, By ), = distance between nodes
as defined in Fig. 4(b), [L]
(8x).. = distance as defined in Fig. 4(b), [L]
Ax; = spatial discretization increment in the x
direction, [L]
At = temporal increment, [T}
Ay, = spatial discretization increment in the y
direction, L]
A = decay constant of nuclide 1, [T"]
8, = porosity of the buffer
8, = porosity of the matrix
& D), (8 D} = effective diffusion coefficient in
the buffer in the x and y directions,
respectively, [L?T
(8, D), 6 D) = effective diffusion coefficient in
the matrix in the x and y directions,
respectively, [L?T"]

1. Introduction

In Korea, like many other countries, the
potential repository for the final disposal of high-
level radioactive waste (HLW) is to be located in
deep geological formation. The disposal concept
for the repository would be similar to that
considered for Swedish KBS-3 (1983) concept in
which the disposal of spent fuel assemblies in
canisters individually emplaced in vertical
deposition holes is considered. The buffer material
should be designed for low permeability to delay
the contact of the waste by groundwater, for
strong sorption to retard or to delay the release of
nuclides to such geologic media as host rocks.
Therefore it is important to study the nuclide
release through the buffer material into the rock
for the repository assessment. For HLW
repository located in deep geological formations,
behavior of chain decaying nuclide in geological
media has been an important topic in assessing its
performance.

However, unfortunately, only a limited number
of analytical works for limited modeling system are
available relating the multi-member chain decay
transport. Recently a series of studies associated
with chain decay transport have been done
numerically by authors (Lee et al., 1993; Lee et
al.,, 1995; Lee and Lee, 1995; Lee et al, 1396;
Lee and Kang, 1997; Lee et al, 1997).

The purpose of this paper is to show how
nuclides can be transported across the buffer-
matrix and buffer-fracture interfaces. This work
presents an illustrative case of the two-dimensional
finite-difference numerical solution for nuclide
transport of an ‘arbitrary decay chain length’ (i.e.,
multi-member chain decay) through a buffer and a
fractured porous medium in the vicinity of HLW
repository by utilizing a control volume method,
which is introduced in detail in previous work. (Lee
and Kang, 1999)
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2. Conceptual Model

Nuclides escaped from a penetrated canister will
diffuse through the buffer material eventually to
the host rock. Fractures in the host rock of a
geological repository around the canister may
intersect disposal holes for canister, providing
advective pathways for the hydrogeologic nuclide
transport, whereas porous rock matrix inerfaced
with buffer will provide diffusive transport
pathways for nuclides. Since fractures having
permeabilities several orders of magnitude higher
than the rock matrix itself provide a main
hydrogeologic pathway for the transport of the
nuclide into the far-field region, the assumption
that the rock matrix surrounding the buffer is
impervious to nuclide transport has commonly
been made. However, recently, studies show that
the nuclides are available to diffuse freely across
the buffer-matrix boundary.

Such an approach is difficult to be handled with
an analytical method due to the complexity of
domain.

The physical system of the fractured rock
modeled here is similar to that treated in many
works (e.g., Sudicky and Frind, 1982; Sudicky and
Frind, 1984; Lee et al.,, 1989; Lee et al., 1993;
Lee and Lee, 1995; Lee and Kang, 1997). In
these models thin rigid parallel fractures are
embedded in a saturated porous rock matrix. The
buffer is modeled as a two-dimensional porous
medium as shown in Fig. 1. The planar geometry
of the modeled domain is shown in Fig. 2.

If a linear sorption isotherm is assumed,
transport for the nuclide | in a saturated fracture
is commonly described by

d 2/ _ 9
,a; +ACR, ; (DT ac,) 3y(D 5 c,]+l,_,c,_lR,_p

0<x<b,y, <y<y,,1>0.

(1)

Also, assuming that there is no advective

transport in the buffer as well as in the matrix at
all, the governing equation is

R.’aac' +A’l IR" ai(enbz’?;] %[9,,0;’ ay}”‘l-lcl-l 110
! 0<x<i,0<y<y, 1> forbuffier (2)

b<x<x,,y, <Y<Y, >0 formatrix.

The discretized domain for the buffer and
fractured porous media is as depicted in Fig. 3,
where the boundary conditions are zero
concentration gradient (Neuman-type} boundary
conditions, at all boundaries except at the canister
surface interface.

%L:O. x=0,x=x,; (3a)
ox

at the centers of the fracture and the matrix
between two parallel fractures,

de, _ .
g =0, y=¥.; (3b)
at the outlet of the modeled domain.

For initial and boundary conditions associated with
the inlet of the buffer, nuclide decay and
transformation of the parent nuclide into its
daughter products are considered together by
Bateman' s decaying source. The concentration at
the inlet boundary for the I-th component of the
decay chain, "¢ (t), which is written as

&)= Z‘,lBhe'” (4a)
where o
=§c:§x,{§(x,-xm)] (@b)
j2m

and c¢9 denotes the initial concentration at the
inlet.

To derive a two-dimensional discretization
equation by control volume approach, first of all, a
grid-point cluster is introduced. {See Fig. 4.) The
modeled domain is divided into variably sized
control volumes, each of which has a central grid
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Fig. 1. Schematic View in the Vicinity of a De-
position Hole Intersected by a Fracture in
a Potential HLW Repository
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Fig. 2. The Planar Geometry Representation of
the Modeled Domain

point located in the geometrical center of the
control volume. The control volume faces are not
necessarily located equidistant from the two
adjacent nodes. Once the control volumes have
been defined, the concentration value is evaluated
at each node. The full description for the
discretization procedure is represented in detail in
Appendix 1.

In order to avoid a discontinuity in
physical properties within a contro! volume,
discontinuities in the medium, such as at the
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Fig. 3. Discretized Two-dimensional Domain for
Buffer and the Fractured Medium

no flux boundary and the fracture-matrix
boundary, are recommended to be located at
control volume faces. Although it leads to
the half-sized control volumes around the
grid points, by postulating a grid point at
the face having control volume of zero
thickness, the need for special discretization
at discontinuities can be eliminated.

The solutions of the algebraic equations (A9)
and (A11) are then obtained using a simple Gauss-
Seidel iteration scheme.

To deal with interface diffusion coefficients,
D, Dy.p, and Dy

coefficients or dispersion coefficients are different

when the diffusion

in adjacent control volumes as in such cases as the
fracture wall interfaced with the matrix and the
buffer interfaced with rock, the analogy to a series
of resistors can be utilized in the same way as
discussed by Patankar {1980). Detailed discussions
are to be found in Appendix II.
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Fig. 4. (a) Steady State One-dimensional Consid-
eration for the Flux in the Fracture; (b)
Two-dimensional Control Volumes in the
Matrix and the Fracture

3. Numerical Illustration

To illustrate an application of the numerical
technique, the decay chain **U — #*'Th — *Ra
which is one of the most important chains in HLW
was chosen. It is emphasized that the solution and
associated computer code are not limited by the
number of members in the chain and that this
three member decay chain was considered for
simplicity. Parameters used are listed in Tables 1
and 2. As seen in the Table 3, the number of
control volumes used is 20 in the x-direction into
the matrix and 100 in the y-direction along the
fracture axis, giving a total of 20 by 100 control
volumes.

Figs. 5 to 7 show the concentration profiles
normalized to the parent nuclide (#%U)
concentration at the inlet boundary as a function
of distance in the direction of the fracture, y at
times equal to 4 x 10%, 396,400, and 3,960,400
years, respectively. The concentration at the inlet,
C,, is changed by Bateman equation. With the
advection-dispersion parameters chosen, these
calculations show that 2*U travels faster than the

Table 1. Parameter Used

Parameter Value

2, 120 m
a, 0.1

8, 0.4

a, 0.76 m
v 0.75 m/yr
D 107 m?/yr
Vb 35cm

Table 2. Input Data for Chain Transport

Nuclide tos, yr R, R% R% !
By 2.47 x 10° 120 o
Z0Th 8 x 10* 1500 0
2Ra 1600 300 0

Table 3. Spatial Increments for the Control
Volume (decay chain transport)

0.006, 0.009, 0.015, 0.025,

. IAZ"";"’ 5o 0-045, 0.07, 0.13, 0.25, 0.45,
TR E ST (1=10~20)
Ay, cm 7 (j=1~5); for buffer,
Jr : .
=6~1 =11~
112 B 100 10 =6~10), 15 (=11~50), 20,

(i=51~100); for fracture and matrix

other two nuclides, due to its smaller retardation
and longer half-life.

For more effective calculation, varying temporal
steps according to the calculation time can be
used. After some numerical experiments, optimum
temporal sizes are obtained. An acceptable time
steps are listed in Table 4.

In these figures one can see all profiles are
abruptly changed around at y=0.35m because
there exists the buffer-rock boundary across which
the properties of media are changed.

The profiles of *'U, #°Th and #*Ra are shown
at two fixed points of interest, i.e., x=3x10° m
and x=1.5x10? m in the direction perpendicular
to the fracture, corresponding to i=1 and i =10,
respectively. These two points are intensionally
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Table 4. Temporal Sizes Used for Breakthrough

Calculations

Time, yrs At, yrs
0-4 x 10° 2 x 10*
0-4 x 10° 2 x 10°
0-1x 10° 2 x 10
1 x 10% 4 x 10%

chosen to deal with two different component of
media; the buffer-matrix and the buffer-fracture.
The same values of retardation factors for each
medium of the buffer, the matrix and the fracture
are used for simplicity. The profiles show the same
trend; higher concentration profiles in the buffer
are changed to lower profiles in the matrix and
lower profiles in the buffer are changed to higher
profiles in the fracture on the contrary. This is
because the nuclides entering the fracture are
taken away by advection and dispersion due to
groundwater flow takes place only in the fracture
although there is a loss term due to matrix
diffusion into the matrix from the fracture. Also, it
should be noted that no flux boundary conditions
are used at each side of the buffer, which results in
fast profiles in the center of buffer media.

In Figs. 6 and 7, the concentrations of 2°Th and
#Ra at y=10.15 m (in rock medium; both in the
fracture and the matrix) reveal that they are still
rising and becoming flat, whereas the
concentration of 2*U alone shows its peak values
earlier in Fig. 6 (among three figures, Figs. 5 to 7)
due to decay effect already started to take place.
Note that the half-life of 2*U is 2.47 x 10° years.

However, the concentrations of all nuclides at
y=1.75 m (in buffer medium) including **U show
their peak concentrations in Fig. 6.

Two-dimensional concentration isopleths
normalized to initial 2*U concentrations (cg) for the
above case are also plotted in Figs. 8 to 16 at
times of 4x 10%, 396,400 and 3,960,400 years
for ®*U, #°Th, and ?*Ra. The plots commonly

Normatized concentration Normalized concentration

Normalized concentration

437

Froias® 1 40,000 yrs
wong bufler ant havhre @ x=3<10°m (1)

kg bufier and ek @x1.5¢10%m (10)

—_y

R Y
oy

-Tllll"' T

T T
10" 10° 10
y.m

Fig. 5. Profiles at t = 40,000 Years

Frofive® 1 =306,400 ya
slong bufter sed imchre @x=3c10°m a1}
—_—"
-—"m

-
along bufler and nei @x=1.5¢10"m (la10}
—"y

—ITVIVVI T

T 7
10” 10° 10
Y'm

Fig. 6. Profiles at t = 396,400 Years

Frollea® 1= 3,980,400 e
#long butler sad oy @ xade1ef'm flat)
—y
e 1Y
.o ™Ra
along butier aad mak §=1.5x10%w (w10}

T T TITIT] T

T T T T T T

“ 0 10
y’ m

Fig. 7. Profiles at t = 3,960,400 Years



438 dJ. Korean Nuclear Society, Volume 31, No. 4, August 1999

ﬁ

y.m’

Fig. 8. Concentration Isopleths for 234y at
t = 40,000 Years

16 oo 008 aptetie 25,400 yoous

y.m

5 10
x*100, m

Fig. 10. Concentration isopleths for 226Ra at t =
40,000 years

Fig. 12. Concentration Isopleths for 20Th at t =
396,400 Years

y.m

16

14

12

10

-
[e—— "1

5 10
x*100, m

Fig. 9. Concentration Isopleths for 23°Th at

t = 40,000 Years

I — ]
M aplete 500400 Yo

X100, m

Fig. 11. Concentration Isopleths for ***U at t =

y.m

16

14

12

10

396,400 Years

._qu-_

100
-

5 10
x*100, m

Fig. 13. Concentration Isopleths for 226Ra at t =

396,400 Years



Two-Dimensional Nuclide Transport Around --- Y.M. Lee, et al 439

y,m

== s 10
X100, m
Fig. 14. Concentration Isopleths for By at t =
3,960,400 Years

4~

| —=1

=y 4]

5 ,
x*100, m

0

Fig. 16. Concentration Isopleths for 26Ra at t =
3,960,400 Years

show that the plumes progress very gently at early
times and then change abruptly in the vicinity of
the buffer-rock interface.

Figs. 17 and 18 show the normalized
concentration profiles as a function of time at
distances y =0.245 and y =6.775 m. At these two
distances each of which is rather randomly
selected for the buffer and the rock, two sets of
profiles seem to be similar showing the peak
concentration around 10° years.

Initially there are no #°Th and **Ra both in the

y.m

5 10
x*100, m

Fig. 15. Concentration Isopleths for 2°Th at t =
3,960,400 Years

source and in the field and all of these nuclides
come from the decay of ?*U, which has a very
long half-life of 2.47 x 10° years. Therefore one
can expect the low concentrations of the daughter
nuclides in the field at early times as shown in the
figures.

Actually, Fig. 17 shows the concentration for
the buffer medium only, whereas Fig. 18 shows
the concentration for the buffer-rock media, where
the interface exists at y=0.35m. Some
unacceptable results happen to the curve of U at
early times, which may result from an abrupt
change of temporal size, because of the use of the

discrete values shown in Table 4.
4. Concluding Remarks

A numerical technique by a control volume
method has been introduced for multi-member
chain decay and transport through a fractured
porous rock matrix in previous work. Also, in
order to demonstrate and verify the model
developed through the study, the concentrations
for some typical cases have been compared with
such semi-analytical solutions by Tang et al.
(1981) and Chiou and Li (1993) which utilizes
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Fig. 17. Breakthroughs as a Function of Time at
v=0.245m

Laplace transform and the inverse Laplace
transform method proposed by Green (1955),
respectively.

These comparison was made only indirectly
because no exact solutions for multi-member chain
decay and transport have been found yet, although
solutions for limited case, e.g., for two-member
decay chain by Sudicky and Frind (1984} is
available. The comparison showed that the model
through previous study generally agreed with exact
solutions well although sometimes there showed
some discrepancy. However, additional calculations
with varying control volume dimensions show that
if a smaller dimension is adopted the discrepancy
could be dramatically reduced. In contrast, once
the criterion for the appropriate temporal size has
been found, the exactness of the solution does not
seem to be very sensitive to the size of the
temporal interval provided that it is less than the
critical value.

In the present study, nuclide transport in the
buffer surrounding the canister and rock medium
has been considered by utilizing the two-
dimensional numerical model developed through
previous work. An illustrative case of the two-
dimensional finite-difference numerical solution for
nuclide transport of an arbitrary decay chain
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Fig. 18. Breakthroughs as a Function of Time at
v=6.775m

length through a buffer and a fractured porous
medium in the vicinity of HLW repository, which
may be of importance in view of performance of
the repository. The three-member decay chain
B9J — BTh — ?*Ra is adopted in the numerical
illustration.

Even though this model is based on a physically
exact formulation utilizing a control volume
method and then the differential governing
equation is directly integrated over each control
volume (and the model has already been partially
verified in previous work), it may still heed further
comparison study with the exact solutions for the
case with a matrix diffusion solution that involves
chain decay in direct manner, as discussed through
previous work.

Another distinct feature of the model developed
in this paper is that it employs variable temporal
and spatial discretization sizes, which makes it
possible to address larger practical problems than
with fixed discretization.

Appendix 1. Two-Dimensional
Discretization Equation

Designate the grid point in a control volume as
P, with neighbors E and W in the x-direction and
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S and N in the y-direction.

The control volume around P shown shaded in
Fig. 4 has avolume of 1 X Ax X Ay with unit
thickness of notional z-direction in a two-
dimensional domain.

In order to avoid unrealistic results, it is convenient
to consider the total flux due to advection plus
dispersion in the fracture, utilizing an available
analytical solution for the steady-state advection-
dispersion equation, as introduced by Patankar
(1980). This is called the exponential scheme.

Since the solution is obtained by marching
forward in time, the discretization equations are
derived by integrating Egs. (1) and (2} over the
control volume for node P and over the time
interval At, which are represented as Eq. (A1) and
(A2), respectively:

[ j"“(k %4 de,R }Mydx

1488 P 1 0 (Al)
III [ { aC} a‘y,'*'}"-lcm _,]dtdydx

where J denotes the total flux, expressed as

de
J=v,-D,—
dy

[ ( ac’+x,c,R’}bdydx
S g B I R B

Eq. (A1) can be evaluated as

(A2)

1+ B

AxAyR{( v l‘r)”'ufr }AlAyD,{'C‘(&)‘c' l‘r(&),f.

MAX{T, T J+ A Ry 5 Ay,

} (A3)

Similarly, from Eq. (A2),

off om o ’ CE e :M -
BayR? {(jcy e o, i) = sty? (B0 o) ®,
e 0 14

"y
+AleR|’(9D'{’c'(By)'c’ i’(f&)"cx-’]"’)‘( (R acd ™ Aayhr.

(A4)

Meanwhile, the governing equation for a steady
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state one-dimensional case in which the advection
and dispersion terms are dealt with could be
generally represented as

vis_i[DLi)=£=o A5

which has an exact solution for a domain N <y < P
(Fig. 4(a)} subject to ¢ (0)=c n and cfy=({dy).}=c , as

_ exp(v ID,_)—l
)= ew +(er =) [cxp[v(&i)n /D, |- 1} (A6)

which leads to the flux through the face n of the
control volume having a grid point P

v(ey —¢,)
e, o1

Similarly, for the flux through the face s,

dc
J,=vc—-D,—=vcy +
d

J,=vc—-DL2€=vc + V(CP—CS)

dy F exp[v(Sy)‘ ! (DL)X]—I' (A8)
Then by introducing Eqs. (A7) and (A8) into Eq.
(A3) would give

&

e ] 1+ 1+AH
P,c aE,c ta, ,Cy +a~,c +as,c +d, +

{[ :-|) ] o (A9)
—= I\, AxAyAt -1
R

where

D | 1 1
ab = AxAy+AtAy—T{—+—]
’ R} (&:)z (&)v/

| | (A10a}
v
Yool + + +A AxAyAt,
¥ R[ [ exp[v(sy )n /(DL )jjl exp{v(&y ): I(D L ).v ]_ 1} ‘
al = AthyD,
E (ax)¢ R, ’ (AlOb)
4 = AtAyD,
w (ax)le b (AlOc)
_ vAxAt/ R,
exs[(®), 1(D.) J-1' A1

!

v 1
a, = —R-l— AxAr 1+ exp[v(ﬁy)n /(D,_ )“]_ l] ’ (AlOe)

d,=,cLAxAy. (Al()f)
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Similarly, Eq. (A4) vields Eq. {A11).

al’,cuu al, uu +a c”“+a c""+a",c"°' +d, +

RI.—I’ A (A 1 1)
R’ o PrabxByALy

where’
8, D'’ 1
a;:B AxAy-l-AtAy('" = ){ L }

&), @,
b, D“’)[ 1 ]
sy A6, Axdy,
T (S RCYN
, Ay, D ) R
a,-Tv (A12b)
. _ boty(B, D4 )/ RY?
" (&),
Ax(0, D" ) R}*
LA ((gy)’ ) : (A12d)
. Ao, DE? RN

(A12a)
+ArAx

a

, {Al12¢)

a

b~y

- (©y),

d,=c;0, ,AxAy . (A126)

. (A12e)

a

Appendix II. Interface Diffusion
Coefficients

As illustrated in Fig. 3, grid points are always
placed at the center of the control volumes.
Therefore, when the control volume sizes are not
uniform, their faces not lie midway between
adjacent grid points. In these circumstances, Eq.
(A13) can be used as the effective diffusion
coefficient through the interface of the fracture
and the matrix.

1- (&), /Bx), |, (Bx)., 18x), ] (A13)

Dror =( D, ©,0r)

where the distances are defined in Fig. 4(b).

Similarly, the effective diffusion coefficient
through the interface of the buffer and the matrix
and the buffer and the fracture can be represented
as Egs. (A14) and (A15), respectively.

D, = ( (%)Z./gsy L (sy(?;’[/,(f;) ] (A14)
and
D, = ( (5(;33/5&) (ﬁy).b/L(SY) ) B

The interface diffusion coefficients, Dy, should
be the values replaced by (8,D %) in Eq. (A12) and
(D7) in Eq. (A10); in the same way, D,., replaced
by (0,D %) in Eq. (A12) and (8,D %) in Eq. (A12),
and D, replaced by (8,D %} in Eq. (A12) and (D)
in Eq. {A10).
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