• Title/Summary/Keyword: Nucleotide sequence divergence

Search Result 71, Processing Time 0.024 seconds

Mitochondrial DNA Sequence Variations and Genetic Relationships among Korean Thais Species (Muricidae: Gastropoda)

  • Lee, Sang-Hwa;Kim, Tae-Ho;Lee, Jun-Hee;Lee, Jong-Rak;Park, Joong-Ki
    • Animal Systematics, Evolution and Diversity
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • Thais Roding, 1798, commonly known as rock-shell, is among the most frequently found gastropod genera worldwide on intertidal rocky shores including those of Japan, China, Taiwan and Korea. This group contains important species in many marine environmental studies but species-level taxonomy of the group is quite complicated due to the morphological variations in shell characters. This study examined the genetic variations and relationships among three Korean Thais species based on the partial nucleotide sequences of mitochondrial cox1 gene fragments. Phylogenetic trees from different analytic methods (maximum parsimony, neighbor-joining, and maximum likelihood) showed that T. bronni and T. luteostoma are closely related, indicating the most recent common ancestry. The low sequence divergence found between T. luteostoma and T. bronni, ranging from 1.53% to 3.19%, also corroborates this idea. Further molecular survey using different molecular marker is required to fully understand a detailed picture of the origin for their low level of interspecific sequence divergence. Sequence comparisons among conspecific individuals revealed extensive sequence variations within the three species with maximum values of 2.43% in T. clavigera and 1.37% in both T. bronni and T. luteostoma. In addition, there is an unexpectedly high level of mitochondrial genotypic diversity within each of the three Korean Thais species. The high genetic diversity revealed in Korean Thais species is likely to reflect genetic diversity introduced from potential source populations with diverse geographic origins, such as Taiwan, Hong Kong, and a variety of different coastal regions in South China and Japan. Additional sequence analysis with comprehensive taxon sampling from unstudied potential source populations will be also needed to address the origin and key factors for the high level of genetic diversity discovered within the three Korean Thais species studied.

Neodothiora pruni sp. nov., a Biosurfactant-Producing Ascomycetous Yeast Species Isolated from Flower of Prunus mume

  • Jeong-Seon Kim;Miran Lee;Jun Heo;Soon-Wo Kwon;Bong-Sik Yun;Yiseul Kim
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.388-392
    • /
    • 2023
  • A yeast strain, designated as JAF-11T, was isolated from flower of Prunus mume Sieb. et Zucc. in Gwangyang, Republic of Korea. Phylogenetic analysis showed that strain JAF-11T was closely related to Neodothiora populina CPC 39399T with 2.07 % sequence divergence (12 nucleotide substitutions and three gaps in 581 nucleotides) in the D1/D2 domain of the large subunit (LSU) rRNA gene, and Rhizosphaera macrospora CBS 208.79T with 4.66 % sequence divergence (25 nucleotide substitutions and five gaps in 535 nucleotides) in the internal transcribed spacer (ITS) region. Further analysis based on the concatenated sequences of the D1/D2 domain of the LSU rRNA gene and the ITS region confirmed that strain JAF-11T was well-separated from Neodothiora populina CPC 39399T. In addition to the phylogenetic differences, strain JAF-11T was distinguished from its closest species, Neodothiora populina CPC 39399T and Rhizosphaera macrospora CBS 208.79T belonging to the family Dothioraceae by its phenotypic characteristics, such as assimilation of carbon sources. Hence, the name Neodothiora pruni sp. nov. is proposed with type strain JAF-11T (KACC 48808T; MB 850034).

Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

  • Jeon, Hyung-Bae;Choi, Seung-Ho;Suk, Ho Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.

Comparative study: nonsynonymous and synonymous substitution of SARS-CoV-2, SARS-CoV, and MERS-CoV genome

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2021
  • The direction of evolution can estimate based on the variation among nonsynonymous to synonymous substitution. The simulative study investigated the nucleotide sequence of closely related strains of respiratory syndrome viruses, codon-by-codon with maximum likelihood analysis, z selection, and the divergence time. The simulated results, dN/dS > 1 signify that an entire substitution model tends towards the hypothesis's positive evolution. The effect of transition/transversion proportion, Z-test of selection, and the evolution associated with these respiratory syndromes, are also analyzed. Z-test of selection for neutral and positive evolution indicates lower to positive values of dN-dS (0.012, 0.019) due to multiple substitutions in a short span. Modified Nei-Gojobori (P) statistical technique results also favor multiple substitutions with the transition/transversion rate from 1 to 7. The divergence time analysis also supports the result of dN/dS and imparts substantiating proof of evolution. Results conclude that a positive evolution model, higher dN-dS, and transition/transversion ratio significantly analyzes the evolution trend of severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus.

Genetic Relationships of Korean Treefrogs (Amphibia; Hylidae) Based on Mitochondrial Cytochrome b and 12S rRNA Genes

  • Jung Eun Lee;Dong Eun Yang;Yu Ri Kim;Hyuk Lee;Hyun Ick Lee;Suh-Yung Yang;Hei Yung Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.295-301
    • /
    • 1999
  • The nucleotide sequence of a 447 base pair fragment in the mitochondrial cytochrome b gene and the complete sequence of the mitochondrial 12S ribosomal RNA gene, 938 bp, were analyzed to infer inter- and intraspecific genetic relationships of Hyla japonica and H. suweonensis from Korea and H, japonica from Japan. In the mitochondrial cytochrome b gene, genetic differentiation among H. japonica populations were 9.62% and 15.66% between H. japonica and H. suweonensis. Based on the Tamura-Nei distance, the level of sequence divergence ranged from 0.45% to 2.75% within Korean H. japonica, while 8.31%-8.87% between Korean and Japanese H. japonica and 11.51%-12.46% between H. japonica and H. suweonensis. In the neigh-bor-joining tree, Korean populations of H. japonica were clustered first at 2.22% and followed by Japanese H. japonica and H. suweonensis at 8.51% and 12.29%, respectively. In mitochondrial 12S rRNA gene, genetic differentiation between H. japonica and H. suweonensis nras 7.17% (68 bp) including 7 gaps. Based on Tamura-Nei distance, the level of sequence divergence ranged 3.53% between Korean and Japanese H. japonica and from 4.93% to 5.41% between H. japonica and H. suweonensis. Phenogram pattern of the 12S rRNA gene sequence corresponded with that of the mitochondrial cytochrome b gene.

  • PDF

Are Current Aspergillus sojae Strains Originated from a Native Aflatoxigenic Aspergillus Species Population Also Present in California?

  • Perng-Kuang Chang;Sui Sheng T. Hua
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.139-147
    • /
    • 2023
  • Aspergillus sojae has long been considered a domesticated strain of Aspergillus parasiticus. This study delineated relationships among the two species and an Aspergillus PWE36 isolate. Of 25 examined clustered aflatoxin genes of PWE36, 20 gene sequences were identical to those of A. sojae, but all had variations to those of A. parasiticus. Additionally, PWE36 developmental genes of conidiation and sclerotial formation, overall, shared higher degrees of nucleotide sequence identity with A. sojae genes than with A. parasiticus genes. Examination of defective cyclopiazonic acid gene clusters revealed that the PWE36 deletion pattern was identical only to those of A. sojae. Using A. sojae SMF134 genome sequence as a reference, visualization of locally collinear blocks indicated that PWE36 shared higher genome sequence homologies with A. sojae than with A. parasiticus. Phylogenetic inference based on genome-wide single nucleotide polymorphisms (SNPs) and total SNP counts showed that A. sojae strains formed a monophyletic clade and were clonal. Two (Argentinian and Ugandan) A. parasiticus isolates but not including an Ethiopian isolate formed a monophyletic clade, which showed that A. parasiticus population is genetically diverse and distant to A. sojae. PWE36 and A. sojae shared a most recent common ancestor (MRCA). The estimated divergence time for PWE36 and A. sojae was about 0.4 mya. Unlike Aspergillus oryzae, another koji mold that includes genetically diverse populations, the findings that current A. sojae strains formed a monophyletic group and shared the MRCA with PWE36 allow A. sojae to be continuously treated as a species for food safety reasons.

A Study on the Speciadon of a Fresh Water Fish Zacco temminckL VII. Vadation of Mitochondrial DNA between 2 Types of Zacco temmincki (갈겨니(Zacco temminki)의 진화에 관한 연구 VII.갈겨니 2 Type의 Mitochondrial DNA변이)

  • Lee, Hei-Yung;Yang, Suh-Yung;Paik, Sang-Gi;Park, Chang-Shin;Yu, Sung-Lim;Lee, Sung-Keun
    • The Korean Journal of Zoology
    • /
    • v.31 no.3
    • /
    • pp.236-242
    • /
    • 1988
  • Mitochondrial DNAs of two Mdh allelotypes of the dark chub, Z. temmincki inhabiting in Korean fresh water, were analysed. Samples of each type were collected from four populations, and the fragment patterns for mtdNA of each type were explained from 7 of the eleven restriction enzymes with hexanucleotide recognition site. Genome size was approximately 16.7 kilobases. The highly typical mtdNA fragments of each type were discovered in digestion profiles produced by Eco RI and Pst I enzyrnes. The comparisons of restriction fragment patterns and relative digestion maps permitted the estimation of fragment homology (F) and nucleotide sequence divergence(p). Between the two identical types, sequence divergence(p) was 0.128(MS), and 0.045(MM), ; between the two different types, 0.195 (range 0.177-0.226). These result may provide a distinct difference more than the value derived from allozyrne analysis, and a powerful new molecular approach for assessing genetic-evolutionary relationship among fishes.

  • PDF

Stock Characterization of the Fleshy Prawn (Penaeus chinensis) in the Yellow Sea by Intraspecific Sequence Variation of the Cytochrome c Oxidase Subunit I Gene

  • HWANG Gyu-Lin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.876-881
    • /
    • 1996
  • To determine the amount of genetic variation among populations of Penaeus chinensis (Osbeck) in the Yellow Sea, 342 bp region of the mitochondrial cytochrome c oxidase subunit I gene was amplified and sequenced. Six haplotypes, which differ by from one to four nucleotide sustitutions, were detected from 34 individuals of 4 populations examined. Mean sequence divergence between pairs of haplotypes was $0.68\%$. Most individuals from 4 populations were shared by the most common genotype. This genotype was distributed evenly in the Korean and Chinese populations. This result is in accordance with findings observed using RFLPs analysis of mtDNA (Hwang et al., 1997). Therefore, it is suggested that P. chinensis should be treated as one unit stock in the Yellow Sea.

  • PDF

Genetic Diversity in Cultured and Wild Populations of the Ascidian Halocynthia roretzi Inferred from Mitochondrial DNA Analysis

  • Yoon, Moon-Geun;Lee, Joo-Kyung;Jin, Hyung-Joo;Jin, Deuk-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2009
  • Nucleotide sequences of about 500 bp from the 5' end of mitochondrial (mt) DNA Cytochrome Oxidase I (COI) were analyzed to estimate the genetic variation between wild and cultured populations of the ascidian Halocynthia roretzi from two sites along the coast of Korea. A total of 25 haplotypes were defined by 21 variable nucleotide sites in the examined COI region. Genetic diversity (haplotype diversity and nucleotide divergence) of wild populations was higher than that of the cultured population. These data suggest that reduced genetic variation in the cultured population may have results from bottleneck effect caused by the use of a limited number of parental stock and pooling of gametes for fertilization. Pairwise population $F_{ST}$ estimates inferred that wild and cultured populations were genetically distinct. The combined results suggest that sequence polymorphism in the COI region would be preferable for estimating the genetic diversity of ascidian populations.

Identification of Mycobacteria by Comparative Sequence Apalysis and PCR-Restriction Fragment Length Polymorphism Analysis (염기서열과 PCR-Restriction Fragment Length Polymorphism 분석에 의한 Mycobacteria 동정)

  • Kook, Yoon-Hoh
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Diagnosis of mycobacterial infection is dependent upon the isolation and identification of causative agents. The procedures involved are time consuming and technically demanding. To improve the laborious identification process mycobacterial systematics supported by gene analysis is feasible, being particularly useful for slowly growing or uncultivable mycobacteria. To complement genetic analysis for the differentiation and identification of mycobacterial species, an alternative marker gene, rpoB encoding the ${\beta}$ subunit of RNA polymerase, was investigated. rpoB DNAs (342 bp) were amplified from 52 reference strains of mycobacteria including Mycobacterium tuberculosis H37Rv (ATCC 27294) and clinical isolates by the PCR. The nucleotide sequences were directly determined (306 bp) and aligned using the multiple alignment algorithm in the MegAlign package (DNASTAR) and MEGA program. A phylogenetic tree was constructed with a neighborhood joining method. Comparative sequence analysis of rpoB DNA provided the basis for species differentiation. By being grouped into species-specific clusters with low sequence divergence among strains belonging to same species, all the clinical isolates could be easily identified. Furthermore RFLP analysis enabled rapid identification of clinical isolates.

  • PDF