• Title/Summary/Keyword: Nucleotide Polymorphism

Search Result 959, Processing Time 0.028 seconds

Development of Molecular Markers for the authentication of Zanthoxyli Pericarpium by the analysis of rDNA-ITS DNA barcode regions (rDNA-ITS DNA 바코드 부위 분석을 통한 산초(山椒) 기원종 감별용 유전자 마커 개발)

  • Kim, Wook Jin;Ji, Yunui;Lee, Young Mi;Kang, Young Min;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.41-47
    • /
    • 2015
  • Objectives : Due to the morphological similarity of the pericarp and description of multi-species in National Pharmacopoeia of Korea and China, the Zanthoxylum Pericarpium is difficult to authenticate adulterant in species levels. Therefore, we introduced the sequence analysis of DNA barcode and identification of single nucleotide polymorphism(SNP) to establish a reliable tool for the distinction of Zanthoxylum Pericarpium from its adulterants. Methods : To analyze DNA barcode region, genomic DNA was extracted from twenty-four specimens of authentic Zanthoxylum species and inauthentic adulterant and the individual internal transcribed spacer regions (rDNA-ITS and ITS2) of nuclear ribosomal RNA gene were amplified using ITS1, ITS2-S2F, and ITS4 primer. For identification of species-specific sequences, a comparative analysis was performed using entire DNA barcode sequences. Results : In comparison of four Zanthoxylum ITS2 sequences, we identified 16, 4, 6, and 4 distinct species-specific nucleotides enough to distinguish Z. schinifolium, Z. bungeanum, Z. piperitum, and Z. simulans, respectively. The sequence differences were available genetic marker to discriminate four species. Futhermore, phylogenetic relationship revealed a clear classification between different Zanthoxylum species showing 4 different clusters. These results indicated that comparative analysis of ITS2 DNA barcode was an useful genetic marker to authenticate Zanthoxylum Pericarpium in species levels. Conclusions : The marker nucleotides, enough to distinguish Z. schinifolium, Z. piperitum, Z. bungeanum, and Z. simulans, were obtained at 30 SNP marker nucleotides from ITS2 sequences. These differences could be used to authenticate official Zanthoxylum Pericarpium from its adulterants as well as discriminating each four species.

Association of Interleukin 10 Haplotype with Low Bone Mineral Density in Korean Postmenopausal Women

  • Park, Byung-Lae;Han, In-Kwon;Lee, Ho-Sa;Kim, Lyoung-Hyo;Kim, Sa-Jin;Shin, Joon-Shik;Kim, Shin-Yoon;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.691-699
    • /
    • 2004
  • Osteoporosis is a disease characterized by exaggerated loss of bone mass, with as much as 50 to 85% of the variation in bone mineral density (BMD) commonly accepted as being genetically determined. Although intensive studies have attempted to elucidate the genetic effects of polymorphisms on BMD and/or osteoporosis in several genes, the genes involved are still largely unknown. The possible associations of genetic variants in five-candidate genes (IL10, CCR3, MCP1, MCP2 and GC) with spinal BMD were investigated in Korean postmenopausal women (n = 370). Fourteen SNPs in five candidate genes were genotyped, and the haplotypes of each gene constructed. The associations of adjusted spinal BMD by age, year since menopause (YSM) and body mass index (BMI), with genetic polymorphisms, were analyzed using multiple regression models. Genetic association analysis of Korean postmenopausal women revealed that IL10 -592A > C and/or IL10 ht2 were associated with decreased bone mass, whereas no significant associations were observed with all polymorphisms in other genes. The levels of spinal BMD in individuals bearing the IL10 -592CC genotype were lower ($0.78{\pm}0.16$) than those in others ($0.85{\pm}0.17$) (P = 0.02), and the BMD of IL10 ht2 bearing individuals were also lower ($0.82{\pm}0.15$) than those in others ($0.85{\pm}0.17$) (P = 0.04). Our results suggest that variants of IL10 might play a role in the decreased BMD, although additional study might need to be followed-up in a more powerful cohort.

Characterization of the Lsi1 Homologs in Cucurbita moschata and C. ficifolia for Breeding of Stock Cultivars Used for Bloomless Cucumber Production

  • Jung, Jaemin;Kim, Joonyup;Jin, Bingkui;Choi, Youngmi;Hong, Chang Oh;Lee, Hyun Ho;Choi, Youngwhan;Kang, Jumsoon;Park, Younghoon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.333-343
    • /
    • 2017
  • Bloomless cucumber fruits are commercially produced by grafting onto the pumpkin stocks (Cucurbita moschata) to restricted silicon ($SiO_2$) absorption. Inhibition of silicon absorption in bloomless stocks is conferred by a mutant allele of the CmLsi1 homologous to Lsi1 in rice. In this study, we characterized the Lsi1 homologs in pumpkin (C. moschata) and its cold-tolerant wild relative C. ficifolia ('Heukjong') in order to develop a DNA marker for selecting a bloomless trait and to establish the molecular basis for breeding bloomless stock cultivars of C. ficifolia. A Cleaved amplified polymorphic sequence (CAPS) marker (CM1-CAPS) was designed based on a non-sysnonymous single nucleotide polymorphism (SNP, C>T) of the CmLsi1 mutant-type allele, and its applicability for Marker-assisted selection (MAS) was confirmed by evaluating three bloom and five bloomless pumpkin stock cultivars. Quantitative RT-PCR of the CmLsi1 for these stock cultivers implied that expression level of the CmLsi1 gene does not appear to be associated with the bloom/bloomless trait and may differ depending on plant species and tissues. A full length cDNA of the Lsi1 homolog [named CfLsi1($B^+$)] of 'Heukjong' (C. ficifolia), was cloned and sequence comparison between CmLsi1($B^+$) and CfLsi1($B^+$) revealed that there exists total 24 SNPs, of which three were non-synonymous. Phylogenetic analysis of CfLsi1($B^+$) and Lsi1 homologs further revealed that CfLsi1($B^+$) is closesly related to Nodulin 26-like intrinsic proteins (NIPs) and most similar to CpNIP1 of C. pepo than C. moschata.

Mitochondrial DNA Polymorphism of the Japanese Anchovy (Engraulis japonicus Temminck & Schlegel) Collected from the Korean Offshore and Inshore Waters (한국근해 및 외해역에 채집된 멸치의 미토콘드리아 DNA 다양성)

  • Cho, Eun-Seob;Kim, Joo-Il
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.812-827
    • /
    • 2006
  • To investigate the population structure and geographic distance among anchovies (Engraulis japonicus) in Korea, we compared and analyzed the mitochondrial DNA control region sequences (227 bp) of anchovies from 12 localities in inshore and offshore waters. The sequence analysis of 84 individuals showed 29 haplotypes, ranging in sequence divergence by pairwise comparisons from 0.3% to 3.5% (1 bp-12 bp). E9 haplotype of anchovies were found largely in inshore waters and also in offshore waters, which was regarded as the major source in Korean waters (58.3%). However, E26, E27, E28, and E29 haplotypes were found in westsouthern (locality 10, four among 7). Phylogenetic analysis using PHYLIP was divided into two clades (clade A and B). Most of the haplotypes, excluding E26, E27, E28, and E29, were strongly supported by bootstrap analysis (>75%), whereas the relationship between clade A and B was weakly supported by bootstrap analysis (51%). High levels of genetic diversity were found; haplotype diversity (H)=0.75-1.00, and nucleotide diversity $({\pi})=0.015-0.0244$. Analysis of $F_{ST}$ between populations in inshore waters ranged in 0.01-0.05, whereas those of offshore waters ranged in 0.01-0.58. A high gene flow occurred in inshore (Nm=22.61-34.22) and offshore (Nm=11.57-45.67) populations. The distribution of mitochondrial DNA haplotypes between westsouthern and other populations was suggestive of significantly different differentiation ($F_{ST}$=0.20-0.59, p<0.05; d=0.52, p=0.00; ${\phi}=0.02-0.41$, p<0.05). These results suggested that the overall anchovy population in the Korean peninsula caused considerable migration due to the mitochondrial gene flow between inshore and offshore populations to form a genetically homogenous and panmictic structure, although a heterogeneous population was found in this study.

Integrative Study on PPARGC1A: Hypothalamic Expression of Ppargc1a in ob/ob Mice and Association between PPARGC1A and Obesity in Korean Population

  • Hong, Mee-Suk;Kim, Hye-Kyung;Shin, Dong-Hoon;Song, Dae-Kyu;Ban, Ju Yeon;Kim, Bum Shik;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.318-322
    • /
    • 2008
  • Obesity is an increasing worldwide health problem that is strongly related to the imbalance of food intake and energy metabolism. It was well-known that several substances in the hypothalamus regulate food intake and energy metabolism. We planned an integrative study to elucidate the mechanism of the development of obesity. Firstly, to find candidate genes with the marvelous effect, the different expression in the hypothalamus between ob/ob and 48-h fasting mice was investigated by using DNA microarray technology. As a result, we found 3 genes [peroxisome proliferator activated receptor, gamma, coactivator 1 alpha (Ppargc1a), calmodulin 1 (Calm1), and complexin 2 (Cplx2)] showing the different hypothalamic expression between ob/ob and 48-h fasting mice. Secondly, a genetic approach on PPARGC1A gene was performed, because PPARGC1A acts as a transcriptional coactivator and a metabolic regulator. Two hundred forty three obese female patients with body mass index (BMI)${\geq}$25 and 285 control female subjects with BMI 18 to<23 were recruited according to the Classification of Korean Society for the Study of Obesity. Among the coding single nucleotide polymorphisms (cSNPs) of PPARGC1A, 2 missense SNPs (rs8192678, Gly482Ser; rs3736265, Thr612Met) and 1 synonymous SNP (rs3755863, Thr528Thr) were selected, and analyzed by PCR-RFLP and pyrosequencing. For the analysis of genetic data, chi-square ($X^2$) test and EH program were used. The rs8192678 was significantly associated with obese women (P<0.0006; odds ratio, 1.5327; 95% confidence interval, 1.2006-1.9568). Haplotypes also showed significant association with obese women ($X^2$=33.28, P<0.0008). These results suggest that PPARGC1A might be related to the development of obesity.

Identification of a Causal Pathogen of Watermelon Powdery Mildew in Korea and Development of a Genetic Linkage Marker for Resistance in Watermelon (Citrullus lanatus)

  • Han, Bal-Kum;Rhee, Sun-Ju;Jang, Yoon Jeong;Sim, Tae Yong;Kim, Yong-Jae;Park, Tae-Sung;Lee, Gung Pyo
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.912-923
    • /
    • 2016
  • Watermelon production is often limited by powdery mildew in areas with a large daily temperature range. Development of resistant watermelon cultivars can protect against powdery mildew; however, little is known about the characteristics of its causal agents. Here, we identified the genus and race of a causal pathogen of powdery mildew in Ansung province of South Korea, and developed molecular markers for the generation of resistant watermelon cultivars. The causal pathogen was determined to be Podosphaera xanthii based on multiple sequence alignments of internal transcribed spacers (ITS) of rDNA. The physiological race was identified as 1W, and the Ansung isolate was named P. xanthii 1W-AN. Following inoculation with the identified P. xanthii 1W-AN, we found inheritance of the resistant gene fitting a single dominant Mendelian model in a segregated population ('SBA' ${\times}$ PI 254744). To develop molecular markers linked to fungus-resistant loci, random amplified polymorphic DNA (RAPD) was accomplished between DNA pooled from eight near-isogenic lines (NILs; $BC_4F_6$), originated from PI 254744 and susceptible 'SBB' watermelon. After sequencing bands from RAPD were identified in all eight NILs and PI254744, 42 sequence-characterized amplifiedregion (SCAR) markers were developed. Overall, 107 $F_2$ plants derived from $BC_4F_6$ NIL-1 ${\times}$ 'SBB' were tested, and one SCAR marker was selected. Sequence comparison between the SCAR marker and the reference watermelon genome identified three Nco I restriction enzyme sites harboring a single nucleotide polymorphism, and codominant cleavage-amplified polymorphic site markers were subsequently developed. A CAPS marker was converted to a high-resolution melt (HRM) marker, which can discriminate C/T SNP (254PMR-HRM3). The 254PMR-HRM3 marker was evaluated in 138 $F_{2:3}$ plants of a segregating population ('SBA' ${\times}$ PI254744) and was presumed to be 4.3 cM from the resistance locus. These results could ensure P. xanthii 1W-AN resistance in watermelon germplasm and aid watermelon cultivar development in marker-assist breeding programs.

Development of Sequence Characterized Amplified Regions (SCAR) Showing for Cheju Native Horse (품종 특이성을 이용한 제주마 판별 표지인자 재발)

  • Cho Byung Wook
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.474-478
    • /
    • 2005
  • This study was conducted to analyze genetic characteristics and to develop the specific marker for Cheju native horse (Coo) at the level of sequence characterized amplified regions (SCARs). We collected blood samples from Cheju native horse and Thoroughbred horse (Th) and obtained genomic DNA from the blood of 50 individuals randomly selected within the breeds. Seven hundred primers were chosen randomly and were used to examin the polymorphism and 40 kinds of primers showed polymorphic RAPD band patterns between two breeds. Thirty primers of them showed horse specific bands. With the primer MG 30, amplified band of 2.0 kb showed the specificity to Cheju native horse (Cnh). Additionally MG 53 detected the thoroughbred horse (Th) specific markers at size of 2.3 kb. As the next, 2.3 kb band from MG 53 was checked with the all individuals from all the breeds of this study, and it maintained the reproducible breed specificity to thoroughbred horse (Th). With this results, 2.3 kb band was cloned into plasmid vector and sequenced bidirectionally from both ends of the cloned fragment. With the obtained sequences 10 nucleotide extended primers including the original arbitray primer were designed as a SCARs primer. Finally, the primer with extended sequence showed the reproducible breed differentiation pattern and it was possible to identify Cheju native horse (Cnh) from other breeds. The SCARs marker 2.3 kb from MG 53 could be used to identify Cheju native horse (Cnh) for not only registration but also horse breeding programe.

Distinguishing the Korean Silage Corn Varieties through Development of PCR-Based SNP Marker (SNP마커 개발을 통한 사료용 옥수수 품종판별)

  • Kim, Sang Gon;Lee, Jin-Seok;Bae, Hwan Hee;Kim, Jung-Tae;Son, Beom-Young;Baek, Seong-Bum
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.168-175
    • /
    • 2017
  • Single nucleotide polymorphisms (SNP) markers allow rapid screening of crop varieties in early growth stages. We developed a modified SNP PCR procedure for assaying SNPs in maize. For SNP marker development, we chosen 200 SNP sites from MaizeGDB database, and designed two base pair mismatch primers based on putative SNP site of B73 genome sequence. PCR products size was from 200 to 500 bp or was not shown in the case of SNP site existing in Korean silage corns. Using previously discovered 16 primer sets, we investigated distinctness of 50 silage F1 hybrid corns including 10 Korean silage corns developed by RDA such as Gangdaok, Kwangpyeongok, Dapyeongok, Andaok, Yanganok, Singwangok, Jangdaok, Cheongdaok, Pyeonggangok, and Pyeonganok as well as 40 foreign commercial silage corns. From cluster analysis, we confirmed that 10 Korean silage F1 hybrid corns were clearly distinguished except for Singwangok, P1395, and several foreign commercial corns, and selected minimum SNP primer combination for Gangdaok, Jangdaok, Pyeonggangok, and Pyeonganok. Therefore, development of SNP marker sets might be faster, cheaper, and feasible breed discrimination method through simple PCR and agarose gel electrophoresis.

Association Study Between Polymorphisms of Inositol 1,4,5-triphosphate Receptor Type 1 (IP3R1) Gene and Carcass Traits in Korean Cattle (Hanwoo) (한우 Inositol 1,4,5-triphosphate Receptor Type 1 (IP3R1) 유전자의 다형성 및 형질 관련성 분석)

  • Kim, Nam-Kuk;Kim, Geon-Seok;Jung, Yu-Sung;Moon, Hee-Joo;Cho, Yong-Min;Yoon, Du-Hak
    • Journal of Animal Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.289-294
    • /
    • 2009
  • Inositol 1,4,5-triphosphate receptor type 1 (IP3R1) is a $Ca^{2+}$ release channel that responds to the second messenger IP3 and that modulates diverse cellular functions such as contraction/excitation, secretion, gene expression and cellular growth. We discovered single nucleotide polymorphisms (SNPs) within IP3R1 gene and analyzed associations between gene polymorphisms and carcass traits in Korean cattle (Hanwoo) in order to develop novel DNA markers at genomic level. Three SNPs were detected at the position of g.1428617A>G, g.1418843C>T and g.1414377C>T with 24 unrelated Hanwoo samples by direct sequencing of the PCR products. We found that genotype of g.1414377C>T SNP was associated with live weight (P<0.05) and carcass weight (P<0.01) using the general linear model of SAS package. These results suggest that polymorphism of IP3R1 gene was associated with weight-related traits in Hanwoo.

Novel Variations in Human Interleukin-29 and Their Association (사람의 Interleukin-29 유전자의 새로운 변이의 단리 및 그들의 연관)

  • Song, Ju-Hee;Chae, Soo-Cheon;Lee, Jae-Hoon;Chung, Hun-Taeg
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.275-279
    • /
    • 2004
  • Gene polymorphisms of cytokines and their receptors are attractive candidates as genetic factors in the pathogenesis of immune-mediated diseases and have been reported to be associated with disease susceptibility to autoimmune, inflammatory and infectious diseases. IL-29 is one of important candidate genes for complex trait of genetic diseases but there is no published survey of single nucleotide polymorphisms (SNPs) in this gene. In this study, for the first time, we have examined the full genomic sequence of IL-29 including the promoter regions to identify SNPs. We examined the frequencies of genotypes and alleles at the SNP site of IL-29 in allergic rhinitis patients and non-allergic rhinitis controls using the direct sequencing method to determine whether this IL-29 SNP is associated with allergic rhinitis in Korean population. We identified one novel SNP (1184C>A) in the intron 2 and one novel variation site (-1842_-1841dupGA) in the promoter region of human IL-29 gene. The P values of SNP or variation site were not significant between the healthy controls and allergic rhinitis patients. Our results suggest that the 1184C>A polymorphism and -1842_-1841dupGA variation site in human IL-29 gene were not associated to allergic rhinitis.