• Title/Summary/Keyword: Nucleoside protection

Search Result 10, Processing Time 0.02 seconds

Design and Synthesis of Novel 2'(β)-Fluoro-3'(α)-hydroxy-threose Nucleosides: Iso-FMAU Analogues as Potent Antiviral Agents

  • Kim, Seyeon;Jee, Jun-Pil;Hong, Joon Hee
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2015
  • Novel 2'(${\beta}$)-fluoro-3'(${\alpha}$)-hydroxy-threose nucleosides (iso-FMAU) as antiviral agents were designed and racemically synthesized from Solketal. Condensation successfully proceeded from a glycosyl donor 9 under $Vorbr{\ddot{u}}ggen$ conditions yielded the nucleoside analogues. Ammonolysis and hydrolysis of isopropylidene protection group gave the desired nucleoside analogues 12, 15, 18, and 19. The antiviral activities of the synthesized compounds were evaluated against the HIV-1, HSV-1, HSV-2 and HCMV. Compound 12 displayed some anti-HCMV activity ($EC_{50}=24.7{\mu}g/ml$) without exhibiting any cytotoxicity up to $100{\mu}M$.

Reaction Mechanism of Purine Nucleoside Phosphorylase and Effects of Reactive Agents for SH Group on the Enzyme in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 얻은 Purine Nucleoside Phosphorylase의 반응기작과 효소에 대한 Sulfhydryl Reagent의 영향)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.222-231
    • /
    • 1994
  • Kinetic analysis was done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Saccharomyces cerevisiae. The binary complexes of PNP${\cdot}$phosphate and PNP${\cdot}$ribose 1-phosphate were involved in the reaction mechanism. The initial velocity and product inhibition studies demonstrated were consistent with the predominant mechanism of the reaction being an ordered bi, bi reaction. The phosphate bound to the enzyme first, followed by nucleoside and base were the first product to leave, followed by ribose 1-phosphate. The kinetically suggested mechanism of PNP in S. cerevisiae was in agreement with the results of protection studies against the inactivation of the enzyme by sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and 5,5'-dithiobisnitrobenzoate (DTNB). PNP was protected by ribose 1-phosphate and phosphate, but not by nucleoside or base, supporting the reaction order of ordered bi, bi mechanism. PCMB or DTNB-inactivated PNP was totally reactivated by dithiothreitol (DTT) and the activity was returned to the level of 77% by 2-mercaptoethanol, indicating that inactivation was reversible. The kinetic behavior of the PCMB-inactivated enzyme had been changed with higher $K_m$ value of inosine and lower $V_m$, and was restored by DTT. Inactivation of enzyme by DTNB showed similar pattern of K sub(m) value with that by PCMB, but had not changed the $V_m$ value, significantly. Negative cooperativity was not found with PCMB or DTNB treated PNP at high concentration of phosphate.

  • PDF

Identificaiton of the dITP- and XTP-Hydrolyzing Protein from Escherichia coli

  • Chung, Ji-Hyung;Park, Hyun-Young;Lee, Jong-Ho;Jang, Yang-Soo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.403-408
    • /
    • 2002
  • A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197(termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphates with an O6 atom-containing purine base to nucleoside monophosphate and pyrophosphate. The EcO197 protein had a strong preference for deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP), while it had little activity in the standard nucleoside triphosphates (dATP, dCTP, dGTP, and dTTP). These aberrant nucleotides can be produced by oxidative deamination from purine nucleotides in cells; they are potentially mutagenic. The mutation protection mechanisms are caused by the incorporation into DNA of unwelcome nucleotides that are formed spontaneously. The EcO197 protein may function to eliminate specifically damaged purine nucleotide that contains the 6-keto group. This protein appears to be the first eubacterial dITP-and XTP-hydrolyzing enzyme that has been identified.

Ischemic Preconditioning Ameliorates Hepatic Injury from Cold Ischemia/Reperfusion

  • PARK Sang-Won;LEE Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • We investigated whether ischemic preconditioning (IPC) protects liver against cold ischemic injury using isolated perfused rat liver. Rat livers were preconditioned by 5 minutes of ischemia and 5 minutes of reperfusion and preserved for 30 hours at $4^{\circ}C$ in University of Wisconsin solution. Livers were then reperfused for 120 minutes. Oxygen uptake and bile flow in ischemic livers markedly decreased during reperfusion. These decreases were prevented by IPC. Portal pressure was elevated in cold ischemic and reperfused livers and this elevation was prevented by IPC. Lactate dehydrogenase and purine nucleoside phosphorylase activities markedly increased during reperfusion. These increases were prevented by IPC. The ratio of reduced glutathione to glutathione disulfide was lower in ischemic livers. This decrease was prevented by IPe. Our findings suggest that IPC protects the liver against the deleterious effect of cold ischemia/reperfusion, and this protection is associated with the reduced oxidative stress.

Potential Antidotes for T-2 Toxin Poisoning

  • Chang, I.M.;Mar, W.;Kim, J.H.;Gotvandi, H.N. Kalandi;Zong, M.
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.3
    • /
    • pp.129-135
    • /
    • 1985
  • In order to search for potential antidotes for T-2 toxin poisoning, seven Chinese herbal drug extracts and five natural constituents were tested on mice intoxicated with T-2 toxin. When extracts of Panax ginseng and Atractylodes japonica (500 mg/kg) were administered p.o. once 3 hrs before and once 1 hr after T-2 toxin treatment, a 30% complete survival rate was noted. In case of Paeonia albiflora var. typica, a 30% complete survival rate was also produced at a dose of 250 mg/kg. Other extracts, Glycyrrhiza uralensis, Scutellaria baicalensis, Rehmannia glutinosa and Plantago asiatica exhibited no significant protection from the T-2 toxin poisoning. A nucleoside, thymidine showed protective activity against T-2 toxin toxicity and it produced a 40% complete survival rate when administered i.p. once 0.5 hr after T-2 toxin treatment. Other natural constituents, aucubin, vitamin C and E, and lipoic acid did not show any significant protective activities.

  • PDF

Immunization with Brucella abortus recombinant proteins protects BALB/c mice from Brucella abortus 544 infection

  • Arayan, Lauren Togonon;Tran, Xuan Ngoc Huy;Reyes, Alisha Wehdnesday Bernardo;Huynh, Tan Hop;Vu, Hai Son;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.157-162
    • /
    • 2018
  • This study evaluated the protective effects of a combination of eight B. abortus recombinant proteins that were cloned and expressed into a pMal vector system and $DH5{\alpha}$: nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12), malate dehydrogenase (rMDH), DNA starvation/stationary phase protection protein (rDps), elongation factor (rTsf), arginase (rRocF), superoxide dismutase (rSodC), and riboflavin synthase subunit beta (rRibH). The proteins were induced, purified, and administered intraperitoneally into BALB/c mice. The mice were immunized three times at weeks 0, 2, and 5 and then infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544 one week after the last immunization. The spleens were collected and the bacterial burden was evaluated at four weeks post-infection. The results showed that this combination produced a significant reduction of the bacterial burden in the spleen with a log reduction of 1.01 compared to the PBS group. Cytokine analysis revealed induction of the cell-mediated immune response in that TNF (tumor necrosis factor) and proinflammatory cytokines IL-6 (Interleukin 6) and MCP-1 (macrophage chemoattractant protein-1) were elevated significantly. In summary, vaccination with a combination of eight different proteins induced a significant protective effect indicative of a cell mediated immune response.

Substantial Protective Immunity Conferred by a Combination of Brucella abortus Recombinant Proteins against Brucella abortus 544 Infection in BALB/c Mice

  • Arayan, Lauren Togonon;Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Son, Vu Hai;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.330-338
    • /
    • 2019
  • Chronic infection with intracellular Brucella abortus (B. abortus) in livestock remains as a major problem worldwide. Thus, the search for an ideal vaccine is still ongoing. In this study, we evaluated the protective efficacy of a combination of B. abortus recombinant proteins; superoxide dismutase (rSodC), riboflavin synthase subunit beta (rRibH), nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12) and malate dehydrogenase (rMDH), cloned and expressed into a pMal vector system and $DH5{\alpha}$, respectively, and further purified and applied intraperitoneally into BALB/c mice. After first immunization and two boosters, mice were infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544. Spleens were harvested and bacterial loads were evaluated at two weeks post-infection. Results revealed that this combination showed significant reduction in bacterial colonization in the spleen with a log protection unit of 1.31, which is comparable to the average protection conferred by the widely used live attenuated vaccine RB51. Cytokine analysis exhibited enhancement of cell-mediated immune response as IFN-${\gamma}$ is significantly elevated while IL-10, which is considered beneficial to the pathogen's survival, was reduced compared to control group. Furthermore, both titers of IgG1 and IgG2a were significantly elevated at three and four-week time points from first immunization. In summary, our in vivo data revealed that vaccination with a combination of five different proteins conferred a heightened host response to Brucella infection through cell-mediated immunity which is desirable in the control of intracellular pathogens. Thus, this combination might be considered for further improvement as a potential candidate vaccine against Brucella infection.

Pre-and Post-ishemic Changes of the Constituent Enzymes in Isolated Rabbit's Myocardium (허혈전후 적출 가토 심근내의 구성 효소의 변화)

  • 천수봉;전도환;이재성;김송명
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.117-124
    • /
    • 2000
  • Background: Nucleoside transport inhibitor(NTI) Keeps AMP, ADP, ATP levels high in myocytes by inhibiting adenosine cataboilsm so that it may preserve the myocardial contractability during ischemia In this study we investigated the effects of cyclic AMP phosphodiesterase inhibor(C-AMP PDSI) and S-P-nitrobenzyl-6 -thioniosine(NBT; a sort of NIT) on myocadial preservation and changes of constituent enzyme. Material and method: Twenty-six isolated rabbit hearts were perfused with Krebs-Henseleit buffer solution for 20 minutes arrested for 20 minutes and ten reperfused for 30 minutes. The following four groups were prepared and hemodynamic changes coronary effluent lactate dehydrogenase (LDH) a-hydroxybutylic accid(a-HBD) levels and myocardial LDH creatine kinase-MB (CK-MB) adenosine deaminase(ADA) a-HBD levels and myocardial LDH creatine kinase-MB (CK-MB) adenosine deaminase(ADA) a-HBD levels were analysed before and after cardiac arest ; Group I(control) ; the heart was only perfused with K-H ; Group II ; the heart was perfused with K-H including C-AMP PDSI(Amrinone 25mg/L); Group III ; the heart was perfused with K-H including NBT(4.19mg/L) ; Group IV ; the heart was perfused with K-H including C-AMP PDSI + NBT. Result : Left venticular developed pressure(LVDP) at 10 minutes of the equilibrium was significantly higher in group III(72.1$\pm$5.3 mmHg p<0.01) and group III(72$\pm$5.6 mmHg P<0.025) as compared with group I (40.8$\pm$4.7mmHg) and LVDP at 20 minutes of the reperfusion was significantly higher in group II(74$\pm$5.3mmHg p<0.01) and group III(72$\pm$5.6mmHg p<0.025) as compared with group I (44.2$\pm$4.6mmHg). Percentage recovery of LVDP at the reperfusion was the highest in group II(123.3%) Percentage recovery of coronary flow at the equilibrium reperfusion were higher in group II(310%, 270%) group III(230%, 290%) group IV(310%, 280%) as compared with group I (100%) respectively. Myocadial LDH level was significant lower in group IV(33495$\pm$1802 IU/gm p<0.04) as compared with group I(48767$\pm$1421 IU/gm) Myocadial CK-MB level was significant higher in group II(74820$\pm$1421 IU/gm) compared with group I (45450$\pm$1737 IU/gm) Myocadial ADA level was significant higher group IV(1215$\pm$8 IU/gm p<0.05) compared with group I(125$\pm$15 IU/gm) but there was no significant difference between group I and group II ,III, IV in changes of coronary effluent LDH, a-HBD levels. Conclusion: C-AMP PDSI solely appears to have a better effect on myocardial preservation after ischemia than NBT but with no synergistic effect and it could keep CK-MB leve high in myocardial tissues.

  • PDF

Next-generation Vaccines for Infectious Viral Diseases (차세대 감염병 백신)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.746-753
    • /
    • 2023
  • Viral infectious diseases have been regarded as one of the greatest threats to global public health. The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a stark reminder of the threat posed by emerging viral infections. Developing and producing appropriate and efficient vaccines and therapeutics are the only options to combat this pandemic. The COVID-19 pandemic has highlighted the need for novel vaccine platforms to control and prevent emerging viral diseases. Conventional vaccine platforms, including live-attenuated vaccine and inactivated vaccines, pose limitations in the speed of vaccine development, manufacturing capacity, and broad protection for emergency use. Interestingly, vaccination with the SARS-CoV-2 vaccine candidate based on the mRNA-lipid nanoparticle (LNP) platform protected against COVID-19, confirming that the nucleoside-modified candidate is a safe and effective alternative to conventional vaccines. Moreover, the prophylactic strategies against the COVID-19 pandemic have been mRNA nucleic acid-based vaccines and nanoparticle-based platforms, which are effective against SARS-CoV-2 and its variants. Overall, the novel vaccine platform has presented advantages compared with the traditional vaccine platform in the COVID-19 pandemic. This review explores the recent advancements in vaccine technologies and platforms, focusing on mRNA vaccines, digital vaccines, and nanoparticles while considering their advantages and possible drawbacks.