• Title/Summary/Keyword: Nucleating agent

Search Result 53, Processing Time 0.025 seconds

Effects of Nucleating Agents on the Morphological, Mechanical and Thermal Insulating Properties of Rigid Polyurethane Foams

  • Kang, Ji-Woung;Kim, Ji-Mun;Kim, Min-Soo;Kim, Youn-Hee;Kim, Woo-Nyon;Jang, Won;Shin, Dae-Sig
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.856-862
    • /
    • 2009
  • This study examined the effects of liquid and solid additives on the morphological, mechanical and thermal insulating properties of rigid polyurethane foams (PUFs). The PUFs synthesized with tetramethylsilane (TEMS) as a liquid-type additive showed a smaller average cell size and lower thermal conductivity than those with the aerosil 200 and clay 30B as solid-type additives. When TEMS was added, the average cell size of the PUF became more uniform and finer due to the reduced surface tension of the polymer solution, which increased the nucleation rate and number of bubbles produced and reduced cell size. The PUFs with TEMS showed the highest closed cell contents among the PUFs prepared using TEMS, aerosil 200 and clay 30B. This suggests that the insulation properties of PUF can be determined by both the size of the cell structure and the amount of closed cell contents in the system. The compression and flexural strengths of the PUF increased slightly when the aerosil 200, clay 30B and TEMS were added compared those of the neat PUF. The reaction profiles of the PUFs showed a similar gel and tack tree time with the reaction time among the PUFs synthesized with three different additives and neat PUF. This suggests that the nucleating additives used in this study do not affect the bubble growth of the chemical reaction, and the additives may act as nucleating agents during the formation of PUF. From the above results of the cell size, thermal conductivity, closed cell contents and reaction profile of the PUFs, liquid-type nucleating agent, such as TEMS, is more effective in decreasing the thermal conductivity of the PUF than solid-type nucleating agent, such as aerosil 200 and clay 30B.

The study of recrystallization of willemite crystal in ceramic glaze (도자기용 아연 결정유의 재결정화 연구)

  • Lee, Hyun-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.136-142
    • /
    • 2020
  • Crystallization of zinc crystalline glaze requires demanding conditions such as the formation of a nucleating agent and the amount of nucleating agent, and growth of crystalline. Zinc crystalline glaze is hard to utilize in the industry because of its narrow range of the firing temperature, and the crystallization's dependency on the quality of zinc. Stimulation of zinc crystallization and formation of frit enable zinc crystalline glaze to be reconstituted in a various range of firing schedules, leading to the development of a competitive industrial glaze.

A Study on the Transparent Glass-Ceramics On Al2O3-SiO2 System (투명 결정화 유리에 관한 연구 - $Al_2O_3-SiO_2$계에 관하여)

  • 박용완;김용욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.223-231
    • /
    • 1992
  • CaO and ZnO were added to Al2O3-SiO2 binary system respectively as flux, then ZrO2 and TiO2 were applied as nucleating agent to these CaO-Al2O3-SiO2 and ZnO-Al2O3-SiO2 ternary system glass. The transparency could not be kept in CaO-Al2O3-SiO2 system glass, whereas the transparent glass-ceramics were prepared in ZnO-Al2O3-SiO2 system glass containing ZrO2 as the nucleating agent. At this time the optimum heating temperatures for the nucleation and the crystal growth were 78$0^{\circ}C$ and 97$0^{\circ}C$. The sizes of the precipitated crystals in the transparent glass-ceramics were below 0.1 ${\mu}{\textrm}{m}$, and their light transmissibilities were more than 80%.

  • PDF

A Study on the Glass-Ceramics of the Cordierite System -the effects of -$TiO_2$ Addition (코디어라이트계 결정화 유리에 관한 연구 -$TiO_2$ 첨가 효과)

  • 박용완;현부성;정준상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1054-1058
    • /
    • 1993
  • The effects of TiO2 addition as a nucleating agent on the cordierite glass-ceramics were investigated. The glass compositiion was stoichiometric cordierite composition of 13.7MgO-34.9Al2O3-51.4SiO2(wt%), and TiO2 as a nucleating agent was added by 5, 10 and 15wt% in addition. The optimum amount of TiO2 addition and appropriate heat treatment schedule were determined by using dilatometer, DTA, XRDA and SEM. The composition containing 10wt% TiO2 was proved to be the best among the investigated compositions. And the optimum heat treatment schedule was 840℃-2h for the nucleation and 1140℃-2h for the crystallization. The properties were as follows. The crystallinity was ∼75%, thermal expansion coefficient 33×10-7/℃(25∼700℃), dielectric constant 7.6(1KHz) and Vicker's hardness 5.1GPa.

  • PDF

Properties of polypropylene fibers using the green chemical orotic acid as nucleating agent

  • Vogel, Roland;Brunig, Harald;Haussler, Liane
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.207-214
    • /
    • 2015
  • It has been reported in the technical literature that orotic acid can be used in order to induce improved crystallization of biodegradable and biocompatible polymers like poly(L-lactic acid), polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexaonat). The expected advantage of the changed crystalline structure is a reinforcing effect of the polymers. A lot of papers reported about the application of inorganic and organic agents for acceleration of heterogeneous nucleation. This study reports on an attempt to use orotic acid as appropriate non-toxic nucleating agent for improving mechanical properties of isotactic polypropylene. Special attention is given to demonstrate the effect of nucleation in a typical melt spinning process in order to improve the mechanical properties. The effects were demonstrated using rheology, thermal analysis and tensile testing.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Effects of nucleating agents and plasticizers on the crystallinity and crystal structure of PLA(PolyLactic Acid) (핵제 및 가소제 첨가에 따른 PLA(PolyLactic Acid)의 결정화도 개선 및 결정구조에 관한 연구)

  • Park, Eun-Jo;Park, Hern-Jin;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.914-920
    • /
    • 2015
  • In this paper, the crystal structure and the crystallinity of PLA(PolyLactic Acid) were studied. PLA is a eco-friendly thermoplastic which completely decomposed by microorganisms, but has low thermal stability and low degree of crystallinity. The low crystallization rate makes the cycle time of injection molding longer and the degree of crystallinity lower. It is a very big disadvantage comparing the other thermoplastics. We improved the degree of crystallinity and the crystallization rate by introducing nucleating agents and plasticizer, and discussed the mechanism.

Thermal Properties and Crystallization of Biodegradable Poly(L-lactic acid) and Poly($\beta$-hydroxynonanoate) Blend (생분해성 Poly(L-lactic acid)/Poly($\beta$-hydroxynonanoate) 블렌드의 열적 성질 및 결정화거동)

  • 박상혁;김영백;이두성
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.477-487
    • /
    • 2000
  • A series of poly(L-lactic acid) (PLLA)/poly($\beta$-hydroxynonanoate) (PHN) blend were prepared to study the miscibility and the crystallization behaviors. The thermal behaviors and characterization of PLLA/PHN blends Were studied using differential scanning calorimetry (DSC), XRD and polarizing optical microscopy (POM). The PLLA and PHN are partially miscible in amorphous region. The crystallinity of PLLA increased as the content of PHN increased, and T$_{g}$, T$_{c}$, and T$_{m}$ of PLLA shift as the content of PHN increased. Moreover, the number of PLLA spherulite increased as the content of PHN increased in the POM experiment. Thus, PHN acted as a nucleating agent to PLLA.

  • PDF

Study on the Isothermal Crystallization Behaviors of PEN/TLCP Blends

  • Park, Jong-Ryul;Yoon, Doo-Soo;Lee, Eung-Jae;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • The isothermal crystallization behaviors of blends of poly(ethylene naphthalate) (PEN) and a thermotropic liquid crystalline polymer (TLCP) were investigated by differential scanning calorimetry (DSC) as functions of crystallization temperature and blend composition. Avrami analyses were applied to obtain information on the crystal growth geometry and the factors controlling the rate of crystallization. The crystallization kinetics of the PEN/TLCP blends followed the Avrami equation up to a high degree of crystallization, regardless of crystallization temperature. The calculated Avrami exponents for PEN/TLCP revealed three-dimensional growth of the crystalline region in each blend. The crystallization rate of each blend increased as the crystallization temperature decreased, and decreased as the TLCP content increased. The crystallization of PEN in the blend was affected by the addition of TLCP, which acts as a nucleating agent.

Effects of a Radiation Crosslinking on a Drawn Microporous HDPE Film with a Nucleating Agent

  • Park, Jong-Seok;Gwon, Sung-Jin;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.580-584
    • /
    • 2009
  • The effects of crystallinity and radiation crosslinking on the physical properties of a microporous high density polyethylene (HDPE) film with Millad3988 as a nucleating agent were investigated. The pores of the HDPE film were affected by the crystallinity. The crystallinity of the HDPE films increased with increasing Millad3988 amount up to 0.1 wt% but decreased with further addition. The mechanical characteristics of the HDPE containing Millad3988 films improved with increasing irradiation dose up to 50 kGy, but decreased at 75 kGy due to severe degradation. The thermal shrinkage behavior of the HDPE films decreased with increasing radiation dose up to 50 kGy. The porosity of the stretched HDPEIMillad3988 films after ${\gamma}$-ray radiation increased with increasing y-ray radiation dose up to 50 kGy. The pores of the irradiated films were formed more easily by a stretching due to the formation of a crosslinked structure.