Effects of a Radiation Crosslinking on a Drawn Microporous HDPE Film with a Nucleating Agent

  • Park, Jong-Seok (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Gwon, Sung-Jin (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Youn-Mook (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 발행 : 2009.08.25

초록

The effects of crystallinity and radiation crosslinking on the physical properties of a microporous high density polyethylene (HDPE) film with Millad3988 as a nucleating agent were investigated. The pores of the HDPE film were affected by the crystallinity. The crystallinity of the HDPE films increased with increasing Millad3988 amount up to 0.1 wt% but decreased with further addition. The mechanical characteristics of the HDPE containing Millad3988 films improved with increasing irradiation dose up to 50 kGy, but decreased at 75 kGy due to severe degradation. The thermal shrinkage behavior of the HDPE films decreased with increasing radiation dose up to 50 kGy. The porosity of the stretched HDPEIMillad3988 films after ${\gamma}$-ray radiation increased with increasing y-ray radiation dose up to 50 kGy. The pores of the irradiated films were formed more easily by a stretching due to the formation of a crosslinked structure.

키워드

참고문헌

  1. D. W. Ihm, J. G. Noh, and J. Y. Kim, J. Power Sources, 109, 388 (2002) https://doi.org/10.1016/S0378-7753(02)00097-6
  2. S. S. Zhang, J. Power Sources, 164, 351 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.065
  3. H. S. Park, J. H. Lee, J. D. Nam, S. J. Seo, Y. K. Lee, Y. S. Oh, and H. C. Jung, Macromol. Res., 14, 430 (2006) https://doi.org/10.1007/BF03219106
  4. H. S. Yang, K. Park, J. S. Son, J. J. Kim, D. K. Han, B. W. Park, and S. H. Baek, Macromol. Res., 15, 256 (2007) https://doi.org/10.1007/BF03218784
  5. S. Kim, K. Cahr, J. Hahn, J. K. Lee, D. Y. Yoon, H. W. Rhee, and M. Y. Jin, Macromol. Res., 15, 1 (2007) https://doi.org/10.1007/BF03218744
  6. A. A. Min, T. G. Chuah, and T. R. Chantara, Mater. Design, 29, 992 (2008) https://doi.org/10.1016/j.matdes.2007.03.023
  7. H. D. Keith, F. J. Padden, and R. G. Vadimsky, J. Polym. Sci. Part A2-4: Polym. Phys., 4, 267 (1966) https://doi.org/10.1002/pol.1966.160040208
  8. J. C. Wittmann and B. Lotz, Prog. Polym. Sci., 15, 909 (1990) https://doi.org/10.1016/0079-6700(90)90025-V
  9. B. J. Chisholm, P. M. Fong, J. G. Zimmer, and R. J. Hendrix, Appl. Polym. Sci., 74, 889 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991024)74:4<889::AID-APP15>3.0.CO;2-R
  10. J. P. Mercier, Polym. Eng. Sci., 30, 270 (1990) https://doi.org/10.1002/pen.760300504
  11. B. Li, G. H. Hu, G. P. Cao, T. Liu, L. Zhao, and W. K. Yuan, J. Supercritical Fluids, 44, 446 (2008) https://doi.org/10.1016/j.supflu.2007.09.012
  12. C. S. Lee, S. H. Yoo, J. Y. Jho, K. Choi, and T. W. Hwang, Macromol. Res., 12, 112 (2004) https://doi.org/10.1007/BF03219003
  13. H. A. Khonakdar, J. U. Morshedian, U. Wagenknecht, and S. H. Jafari, Polymer, 44, 4301 (2003) https://doi.org/10.1016/S0032-3861(03)00363-X
  14. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  15. D. K. Lee, J. T. Park, J. K. Choi, D. K. Roh, J. H. Lee, Y. G. Shul, and J. H. Kim, Macromol. Res., 16, 549 (2008) https://doi.org/10.1007/BF03218558
  16. S. O. Han, D. W. Lee, and O. H. Han, Polym. Degrad. Stabil., 63, 237 (1999) https://doi.org/10.1016/S0141-3910(98)00098-6
  17. S. M. Lee, H. J. Jeon, S.W. Choi, H. H. Song, Y. C. Nho, and K. Cho, Macromol. Res., 14, 640 (2006) https://doi.org/10.1007/BF03218737