• Title/Summary/Keyword: Nucleate boiling

Search Result 209, Processing Time 0.022 seconds

Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli (수직 동심 환형관 내부유동에서 과냉 유체의 비등 시작 열유속에 관한 표면 볼록 곡률의 영향)

  • Byun, Jung-Hwan;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1513-1520
    • /
    • 2002
  • Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli An experimental study has been carried out to investigate the effect of the transverse convex surface curvature of core tubes on heat transfer in concentric annular tubes. Water is used as the working fluid. Three annuli having a different radius of the inner cores, Ri=3.18mm, 6.35mm, and 12.70mm with a fixed ratio of Ri/Ro=0.5 are used over a range of the Reynolds number between about 40,000 and 80,000. The inner cores are made of smooth stainless steel tubes and heated electrically to provide constant heat fluxes throughout the whole length of each test section. Experimental result shows that heat flux values on the onset of nucleate boiling of the smaller inner diameter model is much higher than that of the larger size test model.

Development of a High Performance Bubble Jet Loop Heat Pipe Using the Enhanced Nucleate Boiling Surface in Evaporating Section (핵비등 촉진 전열면 증발부를 이용한 고성능 Bubble Jet Loop Heat Pipe 개발)

  • Kim, Jong-Soo;Shin, Jong-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.363-367
    • /
    • 2015
  • In this study, a high performance Bubble Jet Loop Heat Pipe (BJLHP) was developed using the enhanced nucleate boiling surfaces in an evaporating section. A sintered tube and GEWA-T(Wieland) tube were used enhance nucleate boiling. The thermal performance of these BJLHP was compared with the conventional smooth tube BJLHP with an effective thermal conductivity. This experiment was conducted under the following conditions : working fluid, charging ratio and input power of R-141b, 50%vol., 75W and 100W, respectively. As a result, the effective thermal conductivity of BJLHP with a sintered tube in the evaporating section was 300% higher than the smooth tube BJLHP.

A New Correlation on Heat Transfer Coefficient in Horizontal Multi Channels (수평 다채널에서의 열전달 계수에 관한 새로운 상관식)

  • CHOI, Yong-Seok;LIM, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1388-1394
    • /
    • 2016
  • This paper presents a experimental study of two-phase flow boiling of FC-72 in multi channels. Flow boiling heat transfer coefficients are obtained with mass flux ranging from 152.9 to $353.9kg/m^2s$ and heat flux from 5.6 to $46.1kW/m^2$. The experimental results show that the heat transfer is governed by nucleate boiling mechanism in the low heat flux region. However, it is found that the effects of nucleate boiling and forced convection boiling are combined as the heat flux increases. A new correlation to predict the heat transfer coefficient is developed by using the dimensionless number such as Reynolds number, Weber number, boiling number. This correlation shows good predictive accuracy against the measured data.

Subcooled Burnout Heat Flux on a Heated Surface with Impinging Water Jet (충돌수분류(衝突水噴流)에 의한 서브쿨 Burnout열류속(熱流束)에 관한 연구)

  • Ohm, K.C.;Lee, J.S.;Park, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.527-536
    • /
    • 1996
  • Convective nucleate boiling and burnout heat flux have been studied on a flat, downward facing, constant heat flux surface cooled by an impinging water jet. The tests are progressed from low, nonboiling power to high, burnout heat flux power. The jet velocity and the subcooling do not affect the nucleate boiling curve of $q{\sim}{\Delta}T_{sat}$ diagram, but the supplementary water height affects the curve. For the case of dimensionless height of supplementary water S/D=1, the boiling curve shift to the heigher heat flux than that of S/D=0 or S/D=2. Burnout heat flux is enhanced with increasing jet velocity and subcooling. Also. by using the supplementary water(S/D=1 or S/D=2), burnout heat flux is larger than that of the simple water jet(S/D=0). A generalized correlation for the burnout heat flux data in the present boiling system with an impinging water jet is successfully evolved.

  • PDF

Pool Boiling Heat Transfer Coefficients of R1234yf on Various Enhanced Surfaces (열전달 촉진 표면에서 R1234yf의 풀 비등 열전달계수)

  • Lee, Yohan;Kang, Dong Gyu;Seo, Hoon;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • In this work, nucleate pool boiling heat transfer coefficients (HTCs) of R134a and R1234yf are measured, on flat plain, 26 fpi low fin, Turbo-B, Turbo-C and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a small square copper plate ($9.53mm{\times}9.53mm$), at heat fluxes from $10kW/m^2$ to $200kW/m^2$, with an interval of $10kW/m^2$. Test results show that nucleate boiling HTCs of all enhanced surfaces are greatly improved, as compared to that of a plain surface. Nucleate pool boiling HTCs of R1234yf are very similar to those of R134a, for the five surfaces tested.

Visualization Experiment for Nucleate Boiling Bubble Motion on a Horizontal Tube Heater Fabricated with Flexible Circuit Board (연성회로기판 기반 수평전열관 표면의 비등기포거동 가시화 실험 연구)

  • Kim, Jae Soon;Kim, Yu-Na;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.52-60
    • /
    • 2016
  • The Passive Auxiliary Feedwater System(PAFS) is one of the advanced safety concepts adopted in the Advanced Power Reactor Plus(APR+). To validate the operational performance of the PAFS, detailed understanding of a boiling heat transfer on horizontal tube outside is of great importance. Especially, in the mechanistic boiling heat transfer model, it is important to visualize the phenomena but there are some limitations with conventional experimental approaches. In the present study, we devised a heater based on the Flexible Printed Circuit Board (FPCB) for a more comprehensive visualization and subsequently, a digital image processing technique for the bubble motion measurement was established. Using the measurement technique, important parameters of the nucleate boiling are analyzed.

A Study on Boiling Heat Transfer in a Impinging Subcooled Water Jet System (충돌과냉수분류(衝突過冷水噴流)의 비등열전달(沸騰熱傳達)에 관한 연구(硏究))

  • Lee, G.J.;Lee, J.S.;Ohm, K.C.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 1993
  • This paper describes the boiling heat transfer phenomena to be divided into three regions, nonboiling, nucleate boiling and burn-out in the impinging subcooled water jet system. In the nonboiling region, Nusselt number is a function of Prandtl number, Reynolds number and ${\Delta}T_{sub}/T_{ast}$ In the nucleate boiling region, the heat flux increases with increment of the nozzle exit velocity. But the degree of liquid subcooling does not affect the shape of the nucleate boilng curve. The dimensionless correlations can be expressed in the form of $q{\ell}/K_f{\Delta}T_{ast}=C(Bo{\cdot}C_p{\cdot}{\Delta}T_{sat}/Vo^2)^m{\cdot}(Re/We)^n$. The burn-out heat flux increases linearly with increment of the nozzle exit velocity, but independs of degree of subcooling and the supplementary water height.

  • PDF

Experimental Study on Single Bubble Growth Under Subcooled, Saturated, and Superheated Nucleate Pool Boiling

  • Kim Jeong-Bae;Lee Jang-Ho;Kim Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.692-709
    • /
    • 2006
  • Nucleate pool boiling experiments with constant wall temperature were performed using pure R1l3 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. This study will provide good experimental data with precise constant wall temperature boundary condition for such works.

Nucleate Boiling Heat Transfer from Micro Finned Surfaces with Subcooled FC-72 (FC-72를 이용한 마이크로 핀 표면에서의 핵비등 열전달)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.410-415
    • /
    • 2008
  • To evaluate the performance of nucleate boiling heat transfer between a plain and micro-fin surfaces, the experimental tests have been carried out under various conditions with fluorinert liquid FC-72, which is chemically and electrically stable. Two kinds of micro fins with the dimensions of $200{{\mu}m}{\times}20{{\mu}m}$ and $100{{\mu}m}{\times}10{{\mu}m}$ (width x height) were fabricated on the surface of a silicon chip. The experiments were performed on the liquid subcooling of 5, 10 and 20K under the atmospheric condition. The presented data showed a similar trend in the comparison with result of Rainey & You. Due to its expanded surface areas, the heat flux properties has been significantly enhanced on micro-fin surface comparing to the plain surface.

Numerical Simulation of Bubble Motion During Nucleate Boiling (핵비등에서의 기포거동에 관한 수치해석)

    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.389-396
    • /
    • 2001
  • Direct numerical simulation of bubble growth and merger process on a single nucleation site during partial nucleate boiling is performed. The equations governing conservation of mass, momentum and energy are solved using a finite difference method combined with a level set method for capturing the vapor-liquid interface. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall. Also, a simplified formulation for predicting the evaporative heat flux in a thin liquid micro-layer is developed and incorporated into the level set formulation. Based on the numerical results, the bubble growth and merger pattern and its effect on the heat transfer are discussed.