• Title/Summary/Keyword: Nucleate Pool Boiling

Search Result 77, Processing Time 0.025 seconds

Development of Pool Boiling Heat Transfer Correlation for Hydrocarbon Refrigerants (탄화수소계 냉매의 풀비등 열전달 상관식 개발)

  • Park Ki-Jung;Baek In-Cheol;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.247-253
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of hydrocarbon refrigerants are measured from a horizontal smooth tube of 19.0 mm outside diameter. Tested pure refrigerants are Propylene, Propane, Isobutane, Butane and Dimethylether (DME). The pool temperature was maintained at saturation temperature of $7^{\circ}C$ and heat flux was varied from $10kW/m^2$ to $80kW/m^2$ with an interval of $10kW/m^2$. Wall temperatures were measured directly by thermocouple hole of 0.5 mm out-diameter, 152 mm long and inserting ungrounded sheathed thermocouples from the side of the tube. Tested results show that HTCs of Propane, Propylene are 2.5%, 10.4% higher than those of R22 while those of Butane and Isobutane are 55.2%, 44.3% lower than those of R22 respectively. For pure refrigerants, new correlation can be applied to all of CFCs, HCFCS, HFCs, as well as hydrocarbons was developed. The mean deviation was 4.6%.

Pool Boiling Heat Transfer Coefficients of Water Up to Critical Heat flux on Enhanced Surfaces (열전달 촉진 표면에서 임계 열유속까지의 물의 풀 비등 열전달계수)

  • Lee, Yo-Han;Gyu, Kang-Dong;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.194-200
    • /
    • 2011
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of pure water are measured on horizontal 26 fpi low fin, Turbo-B and Thermoexcel-E square surfaces of 9.53 mm length. HTCs are taken from 10 $kW/m^2$ to critical heat flux for all surfaces. Test results show that critical heat fluxes(CHFs) of all enhanced surfaces are greatly improved as compared to that of a plain surface. CHFs of water on the 26 fpi low fin surface, Thermoexcel-E surface, and Turbo-B are increased up to 320%, 275%, and 150% as compared to that of the plain surface, respectively. CHF of the Turbo-B enhanced surface is lower than that of the 26 fpi low fin surface due to the surface geometry. The heat transfer enhancement ratios of the Thermoexcel-E surface, low fin surface and Turbo-B enhanced surface are 1.6~2.9, 1.6~2.1, 1.4~1.7 respectively in the range of heat fluxes tested. Judging from these results, it can be said that these types of enhanced surfaces can be used in heat transfer applications at high heat fluxes.

Hysteresis on Boiling Heat Transfer at Low Temperature on Enhanced Tubes in a Flooded Evaporator (만액식 증발기의 열전달 촉진관에서 저온 비등열전달의 이력현상 특성)

  • 윤현필;박종익;정진희;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.254-260
    • /
    • 2003
  • The boiling characteristics for R134a are studied to clarify the hysteresis at low temperature on enhanced tubes of a flooded evaporator. Initial boiling conditions, refrigerant temperature, and inlet temperature of the chilled water are considered as the key parameters of the experiments. Unlike previous studies of the boiling heat transfer with uniform heat flux and uniform wall temperature, the wall temperature was varied along the tube. In, this study, it was found that the hysteresis of the temperature overshoot (705) at the onset of nucleate boiling initially at the inlet section of the tube. It is also concluded that the abnormal operation can be avoided during the low temperature boiling if the refrigeration system is started with LMTD larger than $3.4^{\circ}C$ at initial stage and larger than $1.0^{\circ}C$ at normal stage.

Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger (나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구)

  • Seo, Mansu;Lee, Jisung;Kim, Junghan;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • Obtaining external forced convection heat transfer from bubble boiling and validating it with experimental results using cryogenic liquids are suggested to derive total heat transfer coefficient with pool boiling condition in the case of coil type heat exchanger with a bundle of tubes and to overcome the limitation of using the empirical correlation. Experiment is conducted with pool boiling heat transfer of saturate liquid nitrogen with helical coil type heat exchanger using liquid oxygen as hot stream fluid. Experimentally measured heat transfer coefficient is well-agreed with the estimated curve considering nucleate boiling and forced convection induced by bubble rise.

A Study on the Improvement of Condensation and Boiling Heat Transfer on Horizntal Tube by Fin Effect(l)-Shellside Boiling- (수평 원형전열관의 핀효과에 의한 응축 및 비등 열전달촉진에 관한 연구 (1)-튜브외부 비등-)

  • 한규일;조동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1264-1274
    • /
    • 1994
  • Heat transfer performance of integral-fin tube which is used in recipro turbo refrigerator or high compact heat exchangers is studied. Eight tubes with trapezoidal shaped integral-fins having fin densities from 748 to 1654 fpm and 10, 30 internal grooves are tested. A plain tube having the same(inner and outer) diameter as the fin tubes is also tested for comparison. Pool boiling heat transfer of R-11 is investigated experimentally and theoretically on single tube arrangement. The refrigerant evaporates at saturation state of 1 bar on the outside tube surface and heat is supplied by not water which circulates inside of the tube. From the result of eight fin tubes and one plain tube tested, a tube having 1299 fpm-30 grooves shows the best performance. A maximum overall heat transfer coefficient of this tube is about 4000 $W/m^{2}K$ at 2.8m/s of water velocity. The maximum heat transfer enhancement (i.e., the ratio of overall heat transfer coefficients of finned to plain tubes)is about 2.1.

Enhancement of Nucleate Pool Boiling of a Wire-Wrapped Tube (와이어붙이관의 핵비등 열전달촉진)

  • 김내현;김정식;남기일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1235-1244
    • /
    • 1994
  • In this study, experimental results of the nucleate boling of wire-wrapped tubes are provided. Both water and R-113 were boiled. Solid stainless steel wires, stranded copper wires and stranded nylon wires were tested. Solid stainless wire is effective to enhance the boiling of water. The performance is approximately the same(or slightly better at certain conditions) as that of GEWA-T tubes. For the test range of wire diameter 0.6 $mm{\le}d{\le}2.6 mm$, the optimum gap width increases as the wire diameter increases. The maximum heat transfer coefficient was obtained for the 1.0 mm diameter wire, and it is 1.6 times larger than that of the GEWA-T at the heat flux of 20 $kW/m^{2}.$ Solid stainless wire is also effective to enhance the boling of R-113 at low heat fluxes. The performance of the wire-wrapped tube approaches that of GEWA-T. At high heat fluxes, however, the enhancement decreases. The reason may be attributed to the cavity shape and the high wettability of the refrigerants. Stranded copper or nylon wire is effective to enhance the boiling of R-113. The performance is approximately the same(or slightly better) as that of GEWA-T tubes. Maximum heat transfer was obtained for the stranded nylon wire, and it is approximately 1.4 times larger than that for the GEWA-T at the heat flux of 20 $kW/m^{2}.$ The reason may be atrributed to the favorable thermal environment in the restricted regions formed by twisted wires.

Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b (CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성)

  • 김주형;곽태희;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

An Experimental visualization of the Pool Boiling Heat Transfer on the Inclined square surface (경사진 가열면에서의 수조비등에 대한 가시화 연구)

  • Kim, J.K.;Song, J.H.;Kim, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.63-68
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux(CHF) on a 70mm square surface which is inclined at $180^{\circ}$(upward), $90^{\circ}, \;45^{\circ}$. The heater block made of copper with cartridge heaters is submerged in a water tank with windows for visualization. As the heat flux increases from $100kW/m^2$ to $1.1MW/m^2$, the heat transfer regime migrates from the nucleate boiling to film boiling and results in a rapid heat up of the heater block. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized by using a digital camcorder with $512{\times}512$ pixel size at 30fps.

  • PDF

TRANSIENT CHF PHENOMENA DUE TO EXPONENTIALLY INCREASING HEAT INPUTS

  • Park, Jong-Doc;Fukuda, Katsuya;Liu, Qiusheng
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1205-1214
    • /
    • 2009
  • The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of high subcoolings for quasi-steady-state and transient maximum heat fluxes. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. Steady-state CHFs were divided into three regions for lower, intermediate and higher subcooling at pressures resulting from HI, transition and HSN, respectively. HSN consistently occurred in the transient boiling CHF conditions that correspond to a short period. It was also found that the transient boiling CHFs gradually increased, then rapidly decreased and finally increased again as the period became shorter.