• Title/Summary/Keyword: Nuclear safety parameters

Search Result 312, Processing Time 0.024 seconds

Verification of 2-Parameters Site Classification System and Site Coefficients (II) - Earthquake Records in Korea (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (II) - 국내 실지진 기록을 통한 검증)

  • Lee, Sei-Hyun;Park, Dong-Hee;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • Following the companion paper (I. Comparisons with Well-known Seismic Code and Site Response Characteristics), several acceleration data recorded during recent earthquake events in Korea were analyzed to verify the suitability of the proposed two-parameters site classification system and the corresponding site coefficients. For all of rock-soil site pairs less than 30 km distant, response spectrums and corresponding site coefficients, $F_a$ and $F_v$, were determined. Unfortunately, some of data have an eccentric error, where the spectral acceleration of rock site is more amplified than that of soil site. The $F_a$ and $F_v$ for all of pairs except the pairs of error were compared with those in the current code and the proposed system. The $F_a$ and $F_v$ from the recorded motions show definitely different trend from that of the current code. In addition, the site coefficients from recorded motions at four 765 kV substation sites, which are several hundred meters distant, have a remarkably similar trend and absolute values to those in proposed two-parameters site classification system. Based on earthquake motions recorded in domestic areas including data from the four 765 kV substation sites, the two-parameters site classification and site coefficients are superior to the results obtained from the current Korean seismic code.

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.

Electrochemical and Sludge Dissolution Behavior During a Copper Removal Process for Chemical Cleaning on the Secondary Side of Nuclear Steam Generators (원전 증기발생기 2차측 화학세정을 위한 제동공정중의 전기화학적 거동 및 슬러지용해 거동)

  • Hur, Do-Haeng;Chung, Han-Sub;Kim, Uh-Chul;Chae, Sung-Ki;Park, Kwang-Kyoo;Kim, Jae-Pyong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.154-162
    • /
    • 1992
  • Two major goals for chemical cleaning on the secondary side of nuclear steam generators are to remove sludge effectively and to minimize corrosion of base metals. In this work, electrochemical and sludge dissolution behaviors have been investigated in order to find out which parameters are critical and important during a copper removal process for chemical cleaning and to evaluate safety aspects and effectiveness of two major copper removal processes developed commercially in foreign countries. Hydrogen peroxide is vert effective for the process to use EDTA, NH$_4$OH and EDA at 38$^{\circ}C$ to control the potential of copper in a potential range sood for copper sludge removal. Corrosion rates for carbon steel SA 285 Gr.C and Alloy 600 are very small during this process if it is controlled properly. However, the corrosion rate of SA 285 Gr.C will be increased greatly if its corrosion potential is maintained below -450mV. The process to use EDA and ammonium carbonate is effective at 6$0^{\circ}C$ to dissolve copper sludge if the corrosion potential of copper can be controlled above -200mV. However, it is very difficult to raise the corrosion potential of copper to this range by air blowing and stirring.

  • PDF

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Assessment of Impact Resistance Performance of Post-tensioned Curved Wall using Numerical Impact Analysis (긴장력이 도입된 곡면벽체의 충돌저항성능 수치해석평가)

  • Chung, Chul-Hun;Lee, Jungwhee;Jung, Raeyoung;Yu, Tae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.161-167
    • /
    • 2016
  • In this study, the effect of wall curvature and post-tension force on impact resistance is evaluated by numerical analysis method. A total of twelve cases with two parameters such as wall shape of flat and curved, and consideration of post-tensioning force were included in this study. A 3D detailed finite element model of commercial passenger plane engine is utilized as projectile. The depths of penetration and central displacement calculated from the numerical simulations were compared and analysed. As the results of the numerical simulations of this study, penetration depth was reduced approximately 60~80% due to the application of post-tension force, but the decrease of maximum central displacement was not remarkable. Also, the effect of curvature was relatively insignificant.

CCDP Evaluation of the Eire Area of NPPs Using Eire Model CEAST (화재모델 CFAST를 이용한 원전 화재구역의 CCDP평가)

  • Lee Yoon-Hwan;Yang Joon-Eon;Kim Jong-Hoon;Noh Sam-Kyu
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • This paper describes the result of the pump room fire analysis of the nuclear power plant using CFAST fire modeling code developed by NIST. The sensitivity studies are performed over the input parameters of CFAST: the constrained or unconstrained fire, Lower Oxygen Limit (LOL), Radiative Fraction (RF), and the opening ratio of the fire doors. According to the results, a pump room fire is the ventilation-controlled fire, so it is adequate that the value of LOL is 10% which is also the default value. It is anlayzed that the Radiative Fraction does not affect the temperature of the upper gas layer. It is appeared that the integrity of the cable located at the upper layer is maintained except for the safety pump at the fire area and the Conditional Core Damage Probability (CCDP) is 9.25E-07. It seems that CCDP result is more realistic and less uncertain than that of Fire Hazard Analysis (FHA).

Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid (접지 그리드 설계를 위한 전기 저항 단층촬영법에 기반한 지표의 3차원 저항률 분포 추정)

  • Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.117-128
    • /
    • 2016
  • Installation of earth grounding system is essential to ensure personnel safety and correct operation of electrical equipment. Earth parameters, especially, soil resistivity has to be determined in designing an efficient earth grounding system. The most common applied technique to measure soil resistance is Wenner four-point method. Implementation of this method is expensive, time consuming and cumbersome as large set of measurements with variable electrode spacing are required to obtain a one dimensional resistivity plot. It is advantageous to have a method which is of low cost and provides fast measurements. In this perspective, electrical resistance tomography (ERT) is applied to estimate subsurface resistivity profile. Electrical resistance tomograms characterize the soil resistivity distribution based on the measurements from electrodes placed in the region of interest. The nonlinear ill-posed inverse problem is solved using iterated Gauss-Newton method with Tikhonov regularization. Through extensive numerical simulations, it is found that ERT offers promising performance in estimating the three-dimensional soil resistivity distribution.