• Title/Summary/Keyword: Nuclear receptor

Search Result 703, Processing Time 0.034 seconds

Biodistribution and Hepatic Metabolism of Galactosylated $^{111}In-Antibody-Chelator$ Conjugates: Comparison with $^{111}In-Antibody-Chelator$ Conjugates ($^{111}In$-표지 갈락토즈 접합 항체의 체내분포 및 간에서의 대사 : $^{111}In$-표지 항체와의 비교연구)

  • Kwak, Dong-Suk;Jeong, Kyu-Sik;Ha, Jeoung-Hee;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Paik, Chang-H.;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.402-417
    • /
    • 2003
  • Purpose: To evaluate the use of monoclonal antibody (MoAb) as a carrier of the receptor-binding ligand the receptor mediated uptake into liver and subsequent metabolism of $^{111}In-labeled$ galactosylated MoAb-chelator conjugates were investigated and compared with those of $^{111}In$ labeled MoAb. Materials and Methods : T101 MoAb, $IgG_2$ against human lymphocytic leukemic cell, conjugated with cyclic DTPA dianhydride (DTPA) or 2-p-isothiocyanatobenzyl-6-methyl-DTPA (1B4M) was galactosylated with 2-imino-2-methoxyethyl-1-thio-${\beta}$-D-galactose and then radiolabeled with $^{111}In$. Biodistribution and metabolism study was peformed with two $^{111}In-conjugates$ in mice and rats. Results: $^{111}In-labeled$ T101 and its galactosylated conjugates were taken to the liver by the time, mostly within 10 min. However DTPA conjugate was retained longer in the liver than the 1B4M conjugate (55% vs 20% of injected dose at 44 hr). During this time, the radiornetabolite of DTPA conjugate was excreted similarly into urine (24%) and feces (17%). The radiometabolite of 1B4M was excreted primarily into feces (68%) rather than urine (8%). Size exclusion HPLC analysis of the bile and supernatant of liver homogenate showed two peaks the first (35%) with the retention time (Rt) identical to IgG and the second (65%) with Rt similar to free $^{111}In$ at 3 hr post-injection for the 1B4M conjugate, indicating that the metabolite is rapidly excreted through the biliary system. in contrast to DTPA conjugate, the small $^{111}In-DTPA-like$ metabolite was the major radioindium component (90%) in the liver homogenate as early as 3 hour post-injection, but the cumulative radioindium activity in feces was only 17% at 44 hour, indicating that the metabolite from DTPA conjugate does not clear readily through the biliary tract. Conclusion: The galactosylation of the MoAb conjugates resulted in higher hepatocyte uptake and enhanced metabolism, compared to those without galactosylation. Metabolism of the MoAb-conjugates is different between compounds radiolabled with different chelators due to different characteristics of radiometabolites generated in the liver.

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Effect of MK-801 on Methamphetamine-Induced Dopaminergic Neurotoxicity: Long-Term Attenuation of Methamphetamine-Induced Dopamine Release (MK-801이 메트암페타민에 의한 도파민 신경독성에 미치는 효과: 메트암페타민에 의한 도파민 유리의 장기간 억제)

  • Kim, Sang-Eun;Kim, Yu-Ri;Hwang, Se-Hwan
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.258-267
    • /
    • 2001
  • Purpose/Methods: Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum uslng $[^3H]$]WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Results: Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 mg/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4 mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. Conclusion: These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  • PDF

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

Comparisons of Gene Expression Profiles between IVF and Cloned Embryo

  • Han, Dong-Wook;Kim, Eun-Ha;Kim, Kee-Pyo;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.10-10
    • /
    • 2002
  • The low efficiency of animal production by nuclear transfer technique is considered to be result of an incomplete reprogramming of the donor cell nucleus, which leads to a lack of, or abnormal expression of developmentally important genes. There are a lot of genes related to embryo development and some of these genes are regulated by imprinting. IGF2 (insulin like growth factor 2) and IGF2R (IGF2 receptor) that play important roles in preimplantation development are included in imprinted genes also. (omitted)

  • PDF

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

Medical Treatment of Breast Cancer Bone Metastasis: From Bisphosphonates to Targeted Drugs

  • Erdogan, Bulent;Cicin, Irfan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1503-1510
    • /
    • 2014
  • Breast cancer bone metastasis causing severe morbidity is commonly encountered in daily clinical practice. It causes pain, pathologic fractures, spinal cord and other nerve compression syndromes and life threatening hypercalcemia. Breast cancer metastasizes to bone through complicated steps in which numerous molecules play roles. Metastatic cells disrupt normal bone turnover and create a vicious cycle to which treatment efforts should be directed. Bisphosphonates have been used safely for more than two decades. As a group they delay time to first skeletal related event and reduce pain, but do not prevent development of bone metastasis in patients with no bone metastasis, and also do not prolong survival. The receptor activator for nuclear factor ${\kappa}B$ ligand inhibitor denosumab delays time to first skeletal related event and reduces the skeletal morbidity rate. Radionuclides are another treatment option for bone pain. New targeted therapies and radionuclides are still under investigation. In this review we will focus on mechanisms of bone metastasis and its medical treatment in breast cancer patients.

Conjugated Linoleic Acid Negatively Regulates TR4 Activity in 3T3-L1 Adipocytes

  • Choi, Ho-Jung;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.381-388
    • /
    • 2011
  • Dietary conjugated linoleic acid (CLA) play key roles in lipid metabolism. Here, we investigated the effect of CLA on the transcriptional activity of TR4, an orphan nuclear receptor that plays an important role in lipid homeostasis. CLA increased TR4 gene mRNA level in 3T3-L1 adipocytes, but inhibited TR4 transcriptional activity in a dose-dependent manner. TR4 induced perilipin expression in 3T3-L1 adipocytes by activating perilipin promoter activity. In a gel shift assay, TR4 bound direct to the putative TR4 response element in the perilipin promoter. Interestingly, CLA reduced the interaction between TR4 and consensus DR1, a well-known TR4 binding site. Additionally, CLA inhibited TR4-induced perilipin promoter activity in a dose-dependent manner. Together, our results suggest that CLA may play a role in lipid homeostasis in adipocytes by functionally regulating TR4.

Sirt1 and the Mitochondria

  • Tang, Bor Luen
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1's deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1's role in caloric restriction and impacts on longevity. The notion of Sirt1's regulation of PGC-$1{\alpha}$ activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1's regulation of mitochondrial biogenesis and turnover, in relation to PGC-$1{\alpha}$ deacetylation and various aspects of cellular physiology and disease.