• Title/Summary/Keyword: Nuclear receptor

Search Result 689, Processing Time 0.028 seconds

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Oleoylethanolamide Exhibits GPR119-Dependent Inhibition of Osteoclast Function and GPR119-Independent Promotion of Osteoclast Apoptosis

  • Kim, Hyun-Ju;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.340-349
    • /
    • 2020
  • Oleoylethanolamide (OEA), a bioactive lipid in bone, is known as an endogenous ligand for G protein-coupled receptor 119 (GPR119). Here, we explored the effects of OEA on osteoclast differentiation, function, and survival. While OEA inhibits osteoclast resorptive function by disrupting actin cytoskeleton, it does not affect receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. OEA attenuates osteoclast spreading, blocks actin ring formation, and eventually impairs bone resorption. Mechanistically, OEA inhibits Rac activation in response to macrophage colony-stimulating factor (M-CSF), but not RANKL. Furthermore, the OEA-mediated cytoskeletal disorganization is abrogated by GPR119 knockdown using small hairpin RNA (shRNA), indicating that GPR119 is pivotal for osteoclast cytoskeletal organization. In addition, OEA induces apoptosis in both control and GPR119 shRNA-transduced osteoclasts, suggesting that GPR119 is not required for osteoclast apoptosis. Collectively, our findings reveal that OEA has inhibitory effects on osteoclast function and survival of mature osteoclasts via GPR119-dependent and GPR119-independent pathways, respectively.

Treatment outcome in patients with triple negative early stage breast cancers compared with other molecular subtypes

  • Kim, Ja Young;Chang, Sei-Kyung;Park, Heily;Lee, Bo-Mi;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.30 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • Purpose: To determine whether triple negative (TN) early stage breast cancers have poorer survival rates compared with other molecular types. Materials and Methods: Between August 2000 and July 2006, patients diagnosed with stage I, II early stage breast cancers, in whom all three markers (estrogen receptor, progesterone receptor, and human epidermal growth factor receptor [HER]-2) were available and treated with modified radical mastectomy or breast conserving surgery followed by radiotherapy, were retrospectively reviewed. Results: Of 446 patients, 94 (21.1%) were classified as TN, 57 (12.8%) as HER-2 type, and 295 (66.1%) as luminal. TN was more frequently associated with young patients younger than 35 years old (p = 0.002), higher histologic grade (p < 0.0001), and nuclear (p < 0.0001). The median follow-up period was 78 months (range, 4 to 130 months). There were 9 local relapses (2.0%), 15 nodal (3.4%), 40 distant metastases (9.0%), and 33 deaths (7.4%) for all patients. The rates of 5-year OS, DFS, LFS, and DMFS for all patients were 95.5%, 89.9%, 95.4%, and 91.7%, respectively. There were no significant differences in OS, DFS, LFS, and DMFS between triple negative and other subtypes (p > 0.05). Conclusion: We found that patients with TN early stage breast cancers had no difference in survival rates compared with other molecular subtypes. Prospective study in homogeneous treatment group will need for a prognosis of TN early stage breast cancer.

Molecular Characterization and Expression Analysis of the Peroxisome Proliferator Activated Receptor Delta (PPARδ) Gene before and after Exercise in Horse

  • Cho, Hyun-Woo;Shin, Sangsu;Park, Jeong-Woong;Choi, Jae-Young;Kim, Nam-Young;Lee, Woon-Kyu;Lee, Hak-Kyo;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.697-702
    • /
    • 2015
  • While athletic abilities such as speed, endurance and recovery are important in the horse, genes related to these abilities have not been extensively investigated. Here, we characterized the horse peroxisome proliferator-activated receptor delta ($PPAR{\delta}$) gene and analyzed the expression of $PPAR{\delta}$ during exercise. $PPAR{\delta}$ is a known regulator of ${\beta}$-oxidation, muscle fiber transformation, and running endurance. Through evolutionary analysis using the synonymous and non-synonymous mutation ratio, it was revealed that positive selection occurred in the horse $PPAR{\delta}$ gene. Two important domains related to nuclear hormone receptors, C4 zinc finger and ligand binding domain, were also found to be conserved well in horse $PPAR{\delta}$. Horse $PPAR{\delta}$ was expressed ubiquitously in many tissues, but the expression level was various depending on the tissues. In the skeletal muscle, $PPAR{\delta}$ increased about 2.5 folds after 30 min of exercise. Unlike in muscle, the increase of $PPAR{\delta}$ expression was observed at 60 min but not 30 min of exercise in leukocytes. This finding might be useful for testing the endurance of horse using blood samples. Conclusively, the horse $PPAR{\delta}$ gene is evolutionarily conserved well and can be used as a biomarker of endurance in horse.

Estrogen-related receptor γ is a novel catabolic regulator of osteoarthritis pathogenesis

  • Son, Young-Ok;Chun, Jang-Soo
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.165-166
    • /
    • 2018
  • Osteoarthritis (OA) is the most common form of arthritis and is a leading cause of disability with a large socioeconomic cost. OA is a whole-joint disease characterized by cartilage destruction, synovial inflammation, osteophyte formation, and subchondral bone sclerosis. To date, however, no effective disease-modifying therapies for OA have been developed. The estrogen-related receptors (ERRs), a family of orphan nuclear receptor transcription factors, are composed of $ERR{\alpha}$, $ERR{\beta}$, and $ERR{\gamma}$, which play diverse biological functions such as cellular energy metabolism. However, the role of ERRs in OA pathogenesis has not been studied yet. Among the ERR family members, $ERR{\gamma}$ is markedly upregulated in human and various models of mouse OA cartilage. Adenovirus-mediated overexpression of $ERR{\gamma}$ in the mouse knee joint tissue caused OA pathogenesis. Additionally, cartilage-specific $ERR{\gamma}$ transgenic (Tg) mice exhibited enhanced experimental OA. Consistently, $ERR{\gamma}$ in articular chondrocytes directly caused expression of matrix metalloproteinase (MMP) 3 and MMP13, which play a crucial role in cartilage destruction. In contrast, genetic ablation of Esrrg or shRNA-mediated Esrrg silencing in the joint tissues abrogated experimental OA in mice. These results collectively indicated that $ERR{\gamma}$ is a novel catabolic regulator of OA pathogenesis and can be used as a therapeutic target for OA.

Effect of cell-penetrating peptide-conjugated estrogen-related receptor ${\beta}$ on the development of mouse embryos cultured in vitro

  • Yang, Ning Jie;Seol, Dong-Won;Jo, Junghyun;Jang, Hyun Mee;Yoon, Sook-Young;Lee, Dong Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Objective: Estrogen related receptor ${\beta}$ (Esrrb) is a member of the orphan nuclear receptors and may regulate the expression of pluripotencyrelated genes, such as Oct4 and Nanog. Therefore, in the present study, we have developed a method for delivering exogenous ESRRB recombinant protein into embryos by using cell-penetrating peptide (CPP) conjugation and have analyzed their effect on embryonic development. Methods: Mouse oocytes and embryos were obtained from superovulated mice. The expression of Oct4 mRNA and the cell number of inner cell mass (ICM) in the in vitro-derived and in vivo-derived blastocysts were first analyzed by real time-reverse transcription-polymerase chain reaction and differential staining. Then 8-cell embryos were cultured in KSOM media with or without $2{\mu}g/mL$ CPP-ESRRB protein for 24 to 48 hours, followed by checking their integration into embryos during in vitro culture by Western blot and immunocytochemistry. Results: Expression of Oct4 and the cell number of ICM were lower in the in vitro-derived blastocysts than in the in vivo-derived ones (p<0.05). In the blastocysts derived from the CPP-ESRRB-treated group, expression of Oct4 was greater than in the non-treated groups (p<0.05). Although no difference in embryonic development was observed between the treated and non-treated groups, the cell number of ICM was greater in the CPP-ESRRB-treated group. Conclusion: Treatment of CPP-ESRRB during cultivation could increase embryos' expression of Oct4 and the formation rate of the ICM in the blastocyst. Additionally, an exogenous delivery system of CPP-conjugated protein would be a useful tool for improving embryo culture systems.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.

Chronic and Low Dose Exposure to Nonlyphenol or Di(2-Ethylhexyl) Phthalate Alters Cell Proliferation and the Localization of Steroid Hormone Receptors in Uterine Endometria in Mice

  • Kim, Juhye;Cha, Sunyeong;Lee, Min Young;Hwang, Yeon Jeong;Yang, Eunhyeok;Choi, Donchan;Lee, Sung-Ho;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.263-275
    • /
    • 2019
  • Based on our preliminary results, we examined the possible role of low-dose and chronic-exposing of the chemicals those are known as endocrine disrupting chemical (EDC), on the proliferation of uterine endometrium and the localization of steroid receptors. Immunohistochemical or immunofluorochemical methodology were employed to evaluate the localization of antigen identified by monoclonal antibody Ki 67 protein (MKI67), estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), and progesterone receptor (PGR). In $133{\mu}g/L$ and $1,330{\mu}g/L$ di(2-ethylhexyl) phthalate (DEHP) and $50{\mu}g/L$ nonylphenol (NP) groups, the ratio of MKI67 positive stromal cells was significantly increased but not in $500{\mu}g/L$ NP group. The ratios of MKI67 positive glandular and luminal epithelial cells were also changed by the chronic administration of NP and DEHP in tissue with dose specific manner. ESR1 signals were localized in nucleus in glandular and luminal epithelia of control group but its localization was mainly in cytoplasm in DEHP and NP administered groups. On the other hand, it was decreased at nucleus of stromal cells in $1,330{\mu}g/L$ DEHP group. The colocalization patterns of these nuclear receptors were also modified by the administration of these chemicals. Such a tissue specific and dose specific localization of ESR2 and PGR were detected as ESR1 in all the uterine endometrial tissues. These results show that the chronic lows-dose exposing of NP or DEHP modify the localization and colocalization of ESRs and PGR, and of the proliferation patterns of the endometrial tissues.

Perilipin 5 is a novel target of nuclear receptor LRH-1 to regulate hepatic triglycerides metabolism

  • Pantha, Rubee;Lee, Jae-Ho;Bae, Jae-Hoon;Koh, Eun Hee;Shin, Minsang;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.476-481
    • /
    • 2021
  • Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.

Inverse behavior of IL-23R and IL-17RA in chronic and aggressive periodontitis

  • Ruiz-Gutierrez, Alondra del Carmen;Rodriguez-Montano, Ruth;Pita-Lopez, Maria Luisa;Zamora-Perez, Ana Lourdes;Guerrero-Velazquez, Celia
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.4
    • /
    • pp.254-263
    • /
    • 2021
  • Purpose: Periodontitis is associated with a dysbiosis of periodontopathic bacteria, which stimulate the interleukin (IL)-23/IL-17 axis that plays an essential role in the immunopathogenesis of this disease, leading to alveolar bone destruction through receptor activator of nuclear factor κB ligand (RANKL). IL-23 receptor mRNA (IL-23R) has been identified in periodontitis, and IL-17 receptor A mRNA (IL-17RA) and its protein have not yet been evaluated in patients with periodontitis. In this study was measure IL-23R and IL-17RA in gingival tissue (GT) from patients with generalized chronic periodontitis (GCP) and generalized aggressive periodontitis (GAP) and to explore correlations with clinical parameters. Methods: We included 16 healthy subjects (HS), 18 patients with GCP, and 14 with GAP. GT samples were collected during periodontal surgery. Both IL-23R and IL-17RA were detected by enzyme-linked immunosorbent assay. Results: The results were analyzed with Mann-Whitney U test and Spearman' rank correlation coefficients using SPSS version 25.0. We found lower IL-23R levels in patients with GCP and GAP than in HS. Contrarily, we observed higher IL-17RA levels in GCP and GAP patients than in HS. Moreover, we found negative correlations between IL-23R in GT and probing depth and clinical attachment loss (CAL). Likewise, a positive correlation of IL-17RA in GT with CAL was found. Conclusions: The results of these findings suggest that the reverse behavior between IL-23R and IL-17RA in periodontitis patients may also be involved with the activation of RANKL, which promotes alveolar bone loss.