• Title/Summary/Keyword: Nuclear reactor power

Search Result 1,612, Processing Time 0.025 seconds

Optimization of preventive maintenance of nuclear safety-class DCS based on reliability modeling

  • Peng, Hao;Wang, Yuanbing;Zhang, Xu;Hu, Qingren;Xu, Biao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3595-3603
    • /
    • 2022
  • Nuclear safety-class DCS is used for nuclear reactor protection function, which is one of the key facilities to ensure nuclear power plant safety, the maintenance for DCS to keep system in a high reliability is significant. In this paper, Nuclear safety-class DCS system developed by the Nuclear Power Institute of China is investigated, the model of reliability estimation considering nuclear power plant emergency trip control process is carried out using Markov transfer process. According to the System-Subgroup-Module hierarchical iteration calculation, the evolution curve of failure probability is established, and the preventive maintenance optimization strategy is constructed combining reliability numerical calculation and periodic overhaul interval of nuclear power plant, which could provide a quantitative basis for the maintenance decision of DCS system.

Development and validation of reactor nuclear design code CORCA-3D

  • An, Ping;Ma, Yongqiang;Xiao, Peng;Guo, Fengchen;Lu, Wei;Chai, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1721-1728
    • /
    • 2019
  • The advanced node core code CORCA-3D is one of the independent developed codes of NPIC for the nuclear reactor core design. CORCA-3D code can calculate the few-group cross section, solve the 3D diffusion equations, consider the thermal-hydraulic feedback, reconstruct the pin-by-pin power. It has lots of functions such as changing core status calculation, critical searching, control rod value calculation, coefficient calculation and so on. The main theory and functions of CORCA-3D code are introduced and validated with a lot of reactor measured data and the SCIENCE system. Now, CORCA-3D code has been applied in ACP type reactor nuclear cores design.

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao;Liu, Jiusong;Yu, Hongxing;Tian, Changqing;Huang, Shanfang;Deng, Jian;Chai, Xiaoming;Liu, Yu;He, Xiaoqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2094-2106
    • /
    • 2022
  • The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

Conceptual design for a 5 kWe space nuclear reactor power system

  • Huaping Mei;Dali Yu;Shengqin Ma;Jiansong Zhang;Yongju Sun;Chao Chen;Meisheng He;Haixia Wang;Yang Li;Liang Wang;Taosheng Li;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3644-3653
    • /
    • 2024
  • Enhancing the capabilities of unmanned space exploration, such as satellite monitoring and space science missions, requires efficient and reliable nuclear power systems. A viable solution is found in the 1-10 kWe power level of space nuclear reactor power systems, offering advantages such as a manageable research and development process, and relatively low investment requirements. This paper introduces a conceptual design for a 5 kWe space nuclear reactor power system, outlining its components and characteristics. The study includes a thorough analysis of potential challenges, encompassing heat pipe failure accidents, re-entry scenarios, and weight estimation considerations. The results demonstrate that the proposed space nuclear reactor power system effectively meets the safety requirements. The total mass of the power system is estimated at approximately 1.5 tons, with a specific mass of around 300 kg/kWe. This research contributes valuable insights for the design of space nuclear reactor power systems operating within a similar power range.

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

The Study of Improvement in Reactor Thermal Power Measurement Method using KALMAN FILTER (KALMAN FILTER를 이용한 원자로 열출력측정 방법개선에 관한 고찰)

  • 정남교
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.5
    • /
    • pp.82-95
    • /
    • 1997
  • A Study of Improvement in Reactor Thermal Power Measurement Method using Kalman Filter. The objectives of the safety analysis of nuclear power plants are to maintain the surface temperature of fuel and fuel cladding within limit value in case of Loss of Coolant accident (LOCA) so that it ensures the safety and reliability of nuclear power plants. The new technique evaluating the reactor power and improvement of existing plant system increase the safety margin of nuclear power plant operation, and accordingly, economic effect will be anticipated. Hereby, 1 would like to introduce reactor power measurement method using Kalman filter that enables to calculate the reactor power more precisely combining the parameters, for example, turbine output as the 1 st stage pressure of high pressure turbine, and reactor power using energy equilibrium relation. It is expected that the new technique will enhance the accuracy of measurement of reactor power and maintain the reliability of nuclear power operation by increasing operational safety margin, and gain the economic benefit

  • PDF

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.