• 제목/요약/키워드: Nuclear protein

검색결과 1,650건 처리시간 0.024초

Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells

  • Jang, Da Eun;Song, Junbin;Park, Jeong-Woo;Yoon, Soo-Hyun;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.272-277
    • /
    • 2020
  • Protein kinase CK2 downregulation induces premature senescence in various human cell types via activation of the reactive oxygen species (ROS)-p53-p21Cip1/WAF1 pathway. The transcription factor "nuclear factor erythroid 2-related factor 2" (Nrf2) plays an important role in maintaining intracellular redox homeostasis. In this study, Nrf2 overexpression attenuated CK2 downregulation-induced ROS production and senescence markers including SA-β-gal staining and activation of p53-p21Cip1/WAF1 in human breast (MCF-7) and colon (HCT116) cancer cells. CK2 downregulation reduced the transcription of Nrf2 target genes, such as glutathione S-transferase, glutathione peroxidase 2, and glutathione reductase 1. Furthermore, CK2 downregulation destabilized Nrf2 protein via inhibiting autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Finally, CK2 downregulation decreased the nuclear import of Nrf2 by deactivating AMP-activated protein kinase (AMPK). Collectively, our data suggest that both Keap1 stabilization and AMPK inactivation are associated with decreased activity of Nrf2 in CK2 downregulation-induced cellular senescence.

Species-specific variation of RPA-interacting protein (RIP) splice isoforms

  • Kim, Kwang-Soo;Lee, Eun-Ju;Lee, Seung-Hoon;Seo, Tae-Gun;Jang, Ik-Soon;Park, Jun-Soo;Lee, Je-Ho
    • BMB Reports
    • /
    • 제42권1호
    • /
    • pp.22-27
    • /
    • 2009
  • Replication Protein A (RPA) is a single stranded DNA-binding protein involved in DNA metabolic activities such as replication, repair, and recombination. RPA-Interacting Protein $\alpha$ ($RIP{\alpha}$) was originally identified as a nuclear transporter of RPA in Xenopus. The human $RIP{\alpha}$ gene encodes several splice isoforms, of which $hRIP{\alpha}$ and $hRIP{\beta}$ are the major translation products in vivo. However, limited information is available about the alternative splicing of $RIP{\alpha}$ in eukaryotes, apart from that in humans. In this study, we examined the alternative splicing of RIP{\alpha} in the Drosophila, Xenopus, and mouse system. We showed that the number of splice isoforms of RIP{\alpha} was species-specific, and displayed a tendency to increase in higher eukaryotes. Moreover, a mouse ortholog of $hRIP{\alpha}$, $mRIP{\beta}2$, was not SUMOylated, in contrast to $hRIP{\alpha}$. Based on these results, we suggest that the $RIP{\alpha}$ gene gains more splice isoforms and additional modifications after molecular evolution.

total DNA 및 단백질 함량변화에 의한 C. polykrikoides 조기적조 예측 응용 (Application of DNA Content and Total Protein Concentration to Predict Blooms Caused by Cochlodinium polykrikoides (Dinophyceae) in Korean Coastal Waters)

  • Cho, Eun-Seob;Park, Yong-Kyu
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.255-262
    • /
    • 2004
  • 본 연구는 남해안에서 발생되는 유해성 C. polykrikoides 조기적조를 예측하기 위한 기법으로 DAPI로 염색시킨 DNA와 단백질 함량변화를 단기간으로 조사했다. 조사기간 중의 환경요인, 영양염 (질산, 아질산, 인산염) 농도는 조사지점이나 시기에 관계없이 거의 비슷하게 보였다. 그러나 C. polykrikoides 밀도는 조사지점에 따라 현저하게 다르게 나타났다. 2000년 8월 초순의 경우 C2, C5, C6에서 리터 당34, 62, 57세포를 각각 출현했으며, 8월 중순에는 C3에서 최고 547 세포가 보였다. C. polykrikoides 출현밀도와 DNA 및 단백질 함량과는 양성적인 상관관계를 보였다. 특히 C. polykrikoides 세포밀도가 아주 낮을 경우에 높은 상관값을 나타내었다. 따라서 DNA 및 단백질 함량변화 기법은 C. polykrikoides 조기적조를 쉽게 예측 할 수 있는 중요한 도구도 이용될 수 있다.

CTD 탈 인산화 효소의 기능과 역할 (Emerging Roles of CTD Phosphatases)

  • 김영준
    • 생명과학회지
    • /
    • 제27권3호
    • /
    • pp.370-381
    • /
    • 2017
  • 단백질 탈 인산화는 단백질 탈 인산화 효소에 의해 매개되는 과정으로 세포 생존에 매우 중요하다. 단백질 탈 인산화 효소 중에서 최근 CTD (carboxy-terminal domain) 탈 인산화 효소들이 등장하고 있으며 이들에 대한 새로운 생물학적 역할이 밝혀지고 있다. 이 효소의 그룹에는CTD 탈 인산화 효소 1(CTDP1), CTD 소형 탈 인산화 효소 1(CTDSP1), CTD 소형 탈 인산화 효소 2(CTDSP2), CTD 소형 탈 인산화 효소 유사(CTDSPL), CTD 소형 탈 인산화 효소 유사 2(CTDSPL2), CTD 핵 탈 인산화 효소(CTDNEP1) 및 유비퀴틴 유사 도메인 함유CTD 탈 인산화 효소 1(UBLCP1)들이 존재한다. CTDP1은 RNA 중합 효소 II (RNAPII)의 CTD의 두 번째 인산화 된 세린을 탈 인산화 시키고, CTDSP1, STDSP2 및 CTDSPL은 RNAPII의 CTD의 다섯 번째 인산화 된 세린을 탈 인산화 시킨다. 그리고 CTDSP1은 SMAD들, CDCA3, Twist1, 종양억제 단백질인 PML, c-Myc과 같은 새로운 기질을 탈 인산화 시키는 것으로 밝혀지고 있다. CTDP1은 유사 분열 조절 및 암세포 성장과 관련이 있다. CTDSP1, CTDSP2 및 CTDSPL은 종양 억제 기능 및 줄기 세포 분화와 관련이 있다. CTDNEP1은 LIPIN1을 탈 인산화 시키고 핵막 형성과 관련이 있다. CTDSPL2는 조혈 줄기 세포 분화와 관련이 있다. UBLCP1은 26S 프로테아좀을 탈 인산화 시키고 핵 프로테아좀 활성 조절과 관련이 있다. 결론적으로, CTD 탈 인산화 효소의 새로운 기능과 역할은 최근의 연구에서 밝혀지고 있으며, 이 리뷰는 CTD 탈 인산화 효소의 새롭게 밝혀진 역할들을 요약하고자 정리한 것이다.

Expression and Localization of Heat Shock Protein 70 in Frozen-Thawed IVF and Nuclear Transfrred Bovine Embryos

  • Park, Y.J;S.J Song;J.T Do;B.S Yoon;Kim, A.J;K.S Chung;Lee, H.T
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.78-78
    • /
    • 2002
  • The role of heat shock proteins in shielding organism from environmental stress is illustrated by the large-scale synthesis of these protein by the organism studied to date. However, recent evidence also suggests an important role for heat shock protein in fertilization and early development of mammalian embryos. Effects of elevated in vitro temperature on in vitro produced bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (HSP70) by control and frozen-thawed after in vitro fertilization (IVF) or nuclear transfer (NT). The objective of this study was to assess the developmental potential in vitro produced embryos with using of the various containers and examined expression and localization of heat shock protein 70 after it's frozen -thawed. For the vitrification, in vitro produced embryos at 2 cell, 8 cell and blastocysts stage after IVF and NT were exposed the ethylene glycol 5.5 M freezing solution (EG 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min, and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid, cryo-loop. However, survival rates by straw were relatively lower than other containers. Only, nuclear transferred embryos survived by using cryo-loop. After IVF or NT, in vitro matured bovine embryos 2 cell, 8 cell and blastocysts subjected to control and thawed conditions were analysed by semiquantitive reverse transcription polymerase chain reaction methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNA were higher thawed embryos than control embryos. Immunocytochemistry used to localization the hsp70 protein in embryos. Two, 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed frozen-thawed. However, under control condition, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform in distribution.

  • PDF

비만세포에서의 창이자의 탈과립 및 pro-inflammatory cytokines 분비량에 미치는 영향 (Xanthium strumarium suppresses degranulation and pro-inflammatory cytokines secretion on the mast cells)

  • 류지효;윤화정;홍상훈;고우신
    • 한방안이비인후피부과학회지
    • /
    • 제21권3호
    • /
    • pp.82-93
    • /
    • 2008
  • Objective: Previously, the methanol extracts of the semen of Xanthium strumsrium could involved anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated Raw 264,7 cells, We evaluated the anti-allergic effects of X. strumarium on rat basophilic leukemia (RBL-2H3) cells, Methodes : To investigate the effect of X. strumarium on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced RBL-2H3 cells. The effects of X. strumarium on the degranulation and the pro-inflammatory cytokines secretion and expression from RBL-2H3 cells were evaluated with $\beta$-hexosaminidase assay, ELISA, and RT-PCR analysis, In addition, we examined the effects of X. strumarium on nuclear factor (NF)-${\kappa}B$ activation and $I{\kappa}B-\alpha$ degradation using Western blot analysis. Results : X. strumarium inhibited degranulation and secretions and expressions of pro-inflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-\alpha$), interleukin (IL)-4 and cyclooxygenase (COX)-2, on stimulated RBL-2H3 cells, however, X. strumarium not affect cell viability. In stimulated RBL-2H3 cells, the protein expression level of nuclear factor-kappa B (NF-${\kappa}B$) was decreased in the nucleus by X. strumarium. In addition, X. strumarium suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein in RBL-2H3 cells. Conclusion : These results suggest that X. strumarium inhibits the degranulation and secretion of pro-inflammatory cytokines through blockade of NF-${\kappa}B$ activation and I $I{\kappa}B-{\alpha}$ degradation.

  • PDF

Effect of Cycloheximide on Bovine Oocyte Nuclear Progression and Sperm Head Transformation after Fertilization In Vitro

  • Liu, L.;Zhang, H.W.;Qian, J.F.;Fujihara, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.22-27
    • /
    • 1999
  • Bovine oocytes with compact and complete cumulus cells were cultured in 6 groups for up to 24h in TCM199 buffered with 25 mmol/1 HEPES and supplemented with 10% FCS, 1 mg/ml $17{\beta}$-estradiol, 20 IU/ml hCG. Half of the oocytes at each group cultured in the presence of $25{\mu}g/ml$ cycloheximide at different times during maturation (0, 6, 12, 18, 20, 22 h) were fixed at 24 h of maturation to examine the nuclear progression. The rests of them were inseminated with frozen-thawed spermatozoa in medium BO with 10 mg/ml BSA and 10 mg/ml heparin and fixed after additional 18-20 h culture to evaluate the sperm head transformation. When a protein synthesis inhibitor was added at the onset of the maturation, the oocytes were prevented to proceed GVBD. A few of the oocytes (16%) were able to be penetrated and sperm head decondensation was inhibited either. Addition of cycloheximide after 6-12 h of culture resulted in an increasing percentage of GVBCD (more than 80%), but the oocytes became arrested in M-I (69.2%). More than half of the oocytes was penetrated with a decondensing sperm head. Formation of male pronucleus was first obtained at 12 h of culture in the presence of cycloheximide. When cycloheximide was added from 18 h of culture onwards, nuclear progression to M-II was increasingly restored (80.4-85.5%). The proportion of male and female pronuclear formation increased from 17.9% to 46.2%. It is concluded that protein synthesis is necessary not only for GVBD and development from M-I to M-II, but also for sperm head decendensation and male pronuclear formation in bovine oocytes.

쥐의 insulin-like growth tractor리 유전자 발현의 대사조절기전에 관안 연구 (Metabolic Regulation of Insulin-like Growth Factor-1 Expression)

  • 안미라
    • KSBB Journal
    • /
    • 제17권3호
    • /
    • pp.283-289
    • /
    • 2002
  • Insulin-like growth factor-I(IGF-I)은 성장호르몬의 여러 가지 성정촉진 작용을 매개하는 분열 유발성 폴리펩티드이며, 조직의 수선과 재생, 창상치유 및 골대사와 같은 과정들에서 중요한 역할을 하는 것으로 알려져 있고, 비교적 여러 조직에서 발현되고 있는 IGF-I 유전자의 전사조절에 대한 정확한 분자적 기전과 호르몬 및 대사 상태가 그것을 어떻게 조절하는지 아직 밝혀져 있지 않다. 쥐를 절삭시키므로써 대사 상태를 변조시켰을 때, 간 조직내 IGF-I mRNA의 발현에 미치는 절식의 영향을 살펴보기 위하여 solution hybridizatioon/RNase protection 방법으로 분석 하였다. IGF-I의 exon 1 및 exon 2에 의하여 encode된 tran-scripts 모두가 감소된 결과를 얻었고, 이러한 감소는 전사 수준에서 일어난 것으로 nuclear run-on 분석에 의하여 확인하였다. 또한 절식시킨 쥐에서 IGF-I mRNA의 양을 조절하는 cia-acting elements를 IGF-I 유전자의 5'-flanking 지역과 exon 1과 econ 2에서 밝히고자 절식시킨 쥐의 신선한 간조직에서 핵 추출물을 얻어 IGF-I의 여러 가지 DNA fragments와 반응시켜 DNase I protection 분석을 한 결과, IGF-I 유전자의 주요한 전사 개 시점으로부터 downstream에 있는 sequences가 절식으로 변조시킨 대사상태에서 IGF-I의 발현 조절에 중요하며 이곳에는 전사인자인 C/EBP family의 isoform들을 포함한 간조직에 풍부하게 존재하는 여러 전사인자들이 결합할 것으로 제안하였다.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells

  • Choi, Byung-Soo;Kim, Yu-jin;Yoon, Yong Pill;Lee, Hyun Jae;Lee, Choong Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.671-677
    • /
    • 2018
  • In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced $NF-{\kappa}B$ signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba ($I{\kappa}B{\alpha}$). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of $NF-{\kappa}B$ signaling pathway.