• 제목/요약/키워드: Nuclear power generation

검색결과 578건 처리시간 0.035초

시대성이 반영된 원자력발전에 대한 일반인들의 인식 분석 (Analysis of Public Perception of Nuclear Power Generation Reflected in the Times)

  • 박철구;황철환;김동현
    • 한국방사선학회논문지
    • /
    • 제11권6호
    • /
    • pp.483-491
    • /
    • 2017
  • 본 연구는 일반인을 대상으로 시대성이 반영된 각종 잠재적 위험요소와 원자력(방사선)발전의 위험성 대한 인식을 분석하였다. 설문 대상은 다양한 계층으로 하고 그 중에 총 293부를 분석하였다. 그 결과, 잠재적 위험요소 중에서 화재에 대한 위험도 인식이 높게 나타났으며, 다음으로 방사선 테러와 핵(원자력)에너지의 위험도를 다른 위험요소들에 비해 비교적 높게 인식하였다. 연령별, 학력별, 정치 이념 성향에 따른 분석에서 원자력발전의 필요성과 위험성, 안전성에 대해서 상반된 결과를 나타내었다. 정치이념의 성향에 따른 잠재적 위험요소와 원자력발전에 대한 인식은 보수적 이념집단에서 긍정적인 인식을, 진보적 집단에서는 부정적인 인식을 하고 있는 것으로 나타났다. 즉, 정치 이념의 성향에 따라 원자력발전 인식 분석에서 통계적 차이를 보였다. 따라서 원자력(방사선)발전 정책 방향 설정과 방사선 이용 관련 산업에 있어서 전문가 의견과 일반인의 다양한 의견을 반영해서 결정되어져야 할 것으로 판단되고, 일반인도 사실을 바탕으로 객관적이고 과학적인 근거에 입각해 각종 잠재적 위험과 원자력(방사선)에 대해 막연한 불안감을 가지지 말고 유연한 대처를 할 필요가 있다고 판단된다.

사회적 비용을 고려한 국내 주요 발전기술의 균등화발전비용 산정 (LCOE Assessment of Major Power Generation Technologies Reflecting Social Costs)

  • 조영탁;석광훈;박종배
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.179-185
    • /
    • 2018
  • A considerable cost gap between three major power generation technologies, namely nuclear, coal, and combined cycle gas turbine (CCGT), has been a well-established fact in the Korean electricity market. Alternatively, this paper analyzes the levelized costs of electricity (LCOE) of the three technologies reflecting overall social costs of electricity generation including accident risk, $CO_2$ emission, and air pollution damage. The paper unveils to what extent current discriminative subsidies on fuels regarding the social costs, mostly through tax exemptions, affect economic competitiveness of the technologies. In particular, it finds relative positions of coal and CCGT could be altered depending on appreciation level of the social costs. It has limits in analyzing fixed costs of the technologies, however, due to limited data availability of nuclear power, and suggests further studies on the issue.

The acceptance of nuclear energy as an alternative source of energy among Generation Z in the Philippines: An extended theory of planned behavior approach

  • Zachariah John A. Belmonte;Yogi Tri Prasetyo;Omar Paolo Benito;Jui-Hao Liao;Krisna Chandra Susanto;Michael Nayat Young;Satria Fadil Persada;Reny Nadlifatin
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3054-3070
    • /
    • 2023
  • Nuclear Power Plants (NPP) are widely utilized around the globe from different base forms as it is one of the most dependable renewable resources that technological advancements have offered. However, different perceptions of the usage of NPPs emerged from different generations. The purpose of this study was to investigate the acceptance of nuclear energy as an alternative source of energy among Generation Z in the Philippines by utilizing an extended Theory of Planned Behavior (TPB) approach. An online questionnaire which consisted of 31 items was distributed using a purposive sampling approach and 450 respondents of Generation Z voluntarily answered. Structural Equation Modeling (SEM) showed that the knowledge regarding NPP had significant effects on risk perception and benefit perception which subsequently led to subjective norms. In addition, perceived behavioral control and subjective norms had significant effects on behavioral intention which led to nuclear acceptance. Interestingly, the respondents perceived the benefit of NPP as slightly higher than the perceived risk. With these, it was clear that the commissioning Nuclear Power Plant must consider as an alternative source of electric energy in the Philippines. Moreover, this study is one of the first studies that investigated the acceptance of NPP among Generation Z. Lastly, the model could be a basis to strengthen the acceptance strategy of opening NPP among Generation Z, particularly in developing countries.

An autonomous control framework for advanced reactors

  • Wood, Richard T.;Upadhyaya, Belle R.;Floyd, Dan C.
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.896-904
    • /
    • 2017
  • Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

Smart support system for diagnosing severe accidents in nuclear power plants

  • Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun;Hur, Seop;Kim, Hyeonmin
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.562-569
    • /
    • 2018
  • Recently, human errors have very rarely occurred during power generation at nuclear power plants. For this reason, many countries are conducting research on smart support systems of nuclear power plants. Smart support systems can help with operator decisions in severe accident occurrences. In this study, a smart support system was developed by integrating accident prediction functions from previous research and enhancing their prediction capability. Through this system, operators can predict accident scenarios, accident locations, and accident information in advance. In addition, it is possible to decide on the integrity of instruments and predict the life of instruments. The data were obtained using Modular Accident Analysis Program code to simulate severe accident scenarios for the Optimized Power Reactor 1000. The prediction of the accident scenario, accident location, and accident information was conducted using artificial intelligence methods.