• Title/Summary/Keyword: Nuclear potential

Search Result 1,748, Processing Time 0.031 seconds

PROBABILISTIC APPROACH ON SEISMOGENIC POTENTIAL OF A FAULT

  • Chang, Chun-Joong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.437-446
    • /
    • 2011
  • Siting criteria for nuclear power plants require that faults be characterized as to their potential for generating earthquakes, or that the absence of the potential for these occurrences be demonstrated. Because the definition of active faults in Korea has been applied by the deterministic method, which depends on the numerical age of fault movement, the possibility of inherent uncertainties exists in determining the maximum earthquake from the fault sources for seismic design. In an attempt to overcome these problems this study suggests new criteria and a probabilistic quantitative diagnostic procedure that could estimate whether a fault is capable of generating earthquakes in the near future.

Estimating North Korea's nuclear capabilities: Insights from a study on tritium production in a 5MWe graphite-moderated reactor

  • Sungmin Yang;Manseok Lee;Danwoo Ko;Gyunyoung Heo;Changwoo Kang;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2666-2675
    • /
    • 2024
  • This study explores the potential for tritium production in North Korea's 5MWe graphite-moderated reactor, a facility primarily associated with nuclear weapons material production. While existing research on these reactors has largely centered on plutonium, our focus shifts to tritium, a crucial element in boosted fission bombs. Utilizing the MCNP6 code for simulations, the results estimate that North Korea can possibly produce approximately 7-12 g of tritium annually. This translates to the potential production of 1-3 boosted fission bombs each year. By incorporating tritium production into assessments of North Korea's nuclear capabilities, our methodology provides insights into the dynamics of the country's nuclear force, revealing a more diversified and complex composition than previously assumed. The findings significantly aid policymakers, regulatory bodies, and researchers in comprehending potential proliferation risks associated with graphite-moderated reactors and in developing strategies to address the nuclear threat emanating from North Korea.

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • KIM, SOO JAE;PARK, GUNYEOP;PARK, HYUN SUN;KIM, MOO HWAN;BAEK, JEHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.662-668
    • /
    • 2015
  • A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

Proposal for the list of potential radionuclides of interest during NPP site characterization or final status surveys

  • Seo, Hyung-Woo;Oh, Jae Yong;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.234-243
    • /
    • 2021
  • In the research or project planning for the decommissioning of a nuclear power plant, one of several preparations will be the establishment of a list of potential radionuclides to be considered at the time of characterization or final status surveys. Reliable data for selection of potential radionuclides during the transition period to prepare for decommissioning will depend heavily on historical data at the site or, where possible, sampling analysis. However, during the transition period, direct sampling can be challenging, depending on the circumstances of the site or national regulation. A methodology of selecting potential radionuclides for nuclear facility sites which largely consists of three major processes: production of initial list of radionuclides, selection of the insignificant radionuclide that will be eliminated, and consideration of site characterization or sampling. For developing a preliminary list of potential radionuclides for Kori Unit 1 decommissioning, the list of initial radionuclides was made referring to the technical documents applied at decommissioned NPPs in the U.S and additional reference materials applied until the operation of NPPs in Korea. For the screening of insignificant radionuclides, we applied criterion of less than 0.1% of the amount of radioactivity inventory and confirmed the dose fraction using the RESRAD code. The final suit of radionuclides was established, which should be supplemented by reflecting site characterization and sampling process in the future. Thus, the methodology and results for the selection of potential radionuclides suggested in this paper can give an insight as a future reference to deriving DCGLs in relation to site remediation of decommissioning nuclear plants.

The role of tolerance and self-sufficiency in a nation's adoption of nuclear power generation: A search for a quick and simple indicator

  • Roh, Seungkook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.904-907
    • /
    • 2019
  • Nuclear energy remains one of the world's major energy sources, making up over 10% of global electricity generation in 2017. Public acceptance of nuclear energy is essential for its adoption. From a practical perspective, it is beneficial to have a simple indicator that can predict the actual adoption of nuclear energy. Based on practical experience, the authors suggest tolerance and self-sufficiency as potential indicators that may predict the adoption of nuclear energy. By evaluating the cross-sectional data of 18 countries in 2013, this research assesses the actual impact of tolerance and self-sufficiency on public acceptance in order to identify the validity of the two variables. The results indicate that the two variables are statistically significant, while public acceptance is insignificant in explaining national adoption of nuclear energy. This may be because tolerance reflects national willingness to accept potential risk, while self-sufficiency explains a government's likelihood of developing non-carbon energy sources.

The Oxygen Potential of Urania Nuclear Fuel During Irradiation

  • Park, Kwang-Heon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.72-77
    • /
    • 1998
  • A defect model for UO$_2$ fuel containing soluble fission products was devised based on the defect structure of pure and doped uranias. Using the equilibrium between fuel solid-solution and fission-products and the material balance within the fuel, a tracing method to get the stoichiometry change of urania fuel with burnup was made. This tracing method was applied to high burnup urania fuel and DUPIC fuel. The oxygen potential of urania fuel turned out to increase slightly with burnup. The stoichiometry change was calculated to be negligible due to the buffering role f Mo. The oxygen potential of DUPIC fuel out to be sensitive to the initial chemical state of Mo in the fuel.

  • PDF

Effects of Sphingosine-1-phosphate on Vestibular Nuclear Neurons

  • Lee, Jae-Hyuk;Jang, Su-Jeong;Kim, Song-Hee;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • This study was designed to investigate the effects of sphingosine-1-phosphate on the neuronal activity of rat medial vestibular nuclear neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated medial vestibular nuclear neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 15 medial vestibular nuclear neurons revealed excitatory responses to 1 and $5\;{\mu}M$ of sphingosine-1-phosphate. The spike frequency and resting membrane potential of these cells were increased by sphingosine-1-phosphate. The amplitude of afterhyperpolarization was decreased by sphingosine-1-phosphate. Whole potassium currents of medial vestibular nuclear neurons were decreased by sphingosine-1-phosphate (n=12). Sphingosine-1-phosphate did not affect the charybdotoxin-treated potassium currents. These experimental results suggest that sphingosine-1-phosphate increases the neuronal activity of the medial vestibular nuclear neurons by altering the resting membrane potential and afterhyperpolarization.

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

Towards inferring reactor operations from high-level waste

  • Benjamin Jung;Antonio Figueroa;Malte Gottsche
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2704-2710
    • /
    • 2024
  • Nuclear archaeology research provides scientific methods to reconstruct the operating histories of fissile material production facilities to account for past fissile material production. While it has typically focused on analyzing material in permanent reactor structures, spent fuel or high-level waste also hold information about the reactor operation. In this computational study, we explore a Bayesian inference framework for reconstructing the operational history from measurements of isotope ratios from a sample of nuclear waste. We investigate two different inference models. The first model discriminates between three potential reactors of origin (Magnox, PWR, and PHWR) while simultaneously reconstructing the fuel burnup, time since irradiation, initial enrichment, and average power density. The second model reconstructs the fuel burnup and time since irradiation of two batches of waste in a mixed sample. Each of the models is applied to a set of simulated test data, and the performance is evaluated by comparing the highest posterior density regions to the corresponding parameter values of the test dataset. Both models perform well on the simulated test cases, which highlights the potential of the Bayesian inference framework and opens up avenues for further investigation.