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A B S T R A C T

Nuclear archaeology research provides scientific methods to reconstruct the operating histories of fissile
material production facilities to account for past fissile material production. While it has typically focused
on analyzing material in permanent reactor structures, spent fuel or high-level waste also hold information
about the reactor operation. In this computational study, we explore a Bayesian inference framework for
reconstructing the operational history from measurements of isotope ratios from a sample of nuclear waste .
We investigate two different inference models. The first model discriminates between three potential reactors of
origin (Magnox, PWR, and PHWR) while simultaneously reconstructing the fuel burnup, time since irradiation,
initial enrichment, and average power density. The second model reconstructs the fuel burnup and time since
irradiation of two batches of waste in a mixed sample. Each of the models is applied to a set of simulated test
data, and the performance is evaluated by comparing the highest posterior density regions to the corresponding
parameter values of the test dataset. Both models perform well on the simulated test cases, which highlights
the potential of the Bayesian inference framework and opens up avenues for further investigation.

1. Introduction

Fissile material accounting is a cornerstone of the international non-
proliferation regime and will likely play an important role in future
nuclear disarmament regimes. Verifying an account of a fissile material
stockpile is a challenging task if the past operation of the respective
nuclear fuel cycle was concealed from the international community. A
detailed reconstruction of the fissile material production history will
likely be required to ascertain the fidelity of an account (declaration),
which is a task that can profit from the application of nuclear archaeol-
ogy [1]. As a field of research, nuclear archaeology comprises numerous
scientific methods for reconstructing the operating histories of nuclear
facilities, primarily nuclear reactors and enrichment facilities.

So far, nuclear archaeology methods for nuclear reactors have fo-
cused on analyzing samples from permanent structures in the reactor,
e.g., graphite moderator or pressure tubes [2,3], to reconstruct operat-
ing information relevant to the past plutonium production. However,
high-level waste (HLW), typically generated at reprocessing facilities,
may also hold insightful information about the operating history of
nuclear reactors, and nuclear archaeology would benefit from methods
to extract this information.

Reconstructing the origin and history of irradiated nuclear mate-
rial also falls within the scope of nuclear forensics. In this context,
machine-learning-based frameworks have been proposed to reconstruct
information from measurements of isotopic ratios in samples of nuclear
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material [4,5]. These studies included reactor-type classification and ir-
radiation parameter reconstruction. It has been proposed that extending
these methods to deal with mixed samples could be possible [4].

Independently, preliminary, simulation-based studies have shown
that it is, in principle, possible to use a Bayesian inference framework
to reconstruct fuel irradiation parameters from HLW samples [6,7].
Bayesian inference offers the advantage of considering not only the
observed evidence but also additional information in the form of a
prior. It is versatile because the likelihood can be adjusted to different
application cases, and it facilitates quantifying the uncertainties of the
reconstructed parameters. The framework was demonstrated with both
a single batch of fuel and a mixture of two batches of spent fuel.
While promising, the study remained limited in terms of the number
of reconstructed parameters and the number of test cases and was
restricted to a single reactor type.

In this study, we aim to further develop the Bayesian inference
framework as a tool for inferring irradiation parameters of a sample
of nuclear waste (spent fuel or HLW), using measurements of intra-
element isotopic ratios as evidence. We consider two different models,
one focusing on reactor-type classification and the other focusing on
reconstructing parameters of a mixture, and apply each model to a
set of simulated test data to evaluate its performance. In the following
sections, we explain the Bayesian framework, outline the two different

https://doi.org/10.1016/j.net.2024.02.031
Received 2 November 2023; Received in revised form 22 January 2024; Accepted 16 February 2024

https://www.elsevier.com/locate/net
https://www.elsevier.com/locate/net
mailto:benjamin.jung1@rwth-aachen.de
https://doi.org/10.1016/j.net.2024.02.031
https://doi.org/10.1016/j.net.2024.02.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2024.02.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Nuclear Engineering and Technology 56 (2024) 2704–2710

2705

B. Jung et al.

reconstruction models, and analyze and discuss their performance on
the synthetic test data.

2. Bayesian inference

Bayesian inference is a probabilistic method for fitting a model 𝑓
to data 𝑦 to obtain a probability distribution on the parameters 𝜃 of
the model [8]. A joint probability distribution is derived from the prior
distribution 𝑝(𝜃) of the parameters 𝜃 and the likelihood 𝑝(𝑦|𝜃). Bayes’ rule
yields the posterior distribution

𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
∝ 𝑝(𝜃)𝑝(𝑦|𝜃). (1)

The prior 𝑝(𝜃) incorporates all previously held beliefs about the param-
eters 𝜃, without taking the data into account. The likelihood 𝑝(𝑦|𝜃),
considered to be a function purely of 𝜃, computes the probability of
the data 𝑦 given parameters 𝜃. Since 𝑝(𝑦) does not depend on 𝜃, it
is treated as a normalization constant, which yields the unnormalized
posterior distribution

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃). (2)

Applied to the context of this paper, the inference parameters 𝜃 are
variables of interest, such as fuel burnup, time since irradiation (TSI),
initial enrichment or reactor type. The data 𝑦 are isotopic ratios measured
in the spent fuel or HLW. For a given set {𝑦𝑟} of independent isotopic
ratios, the likelihood is modeled as:

𝑝(𝑦|𝜃) =
∏

𝑟


(

𝑓𝑟 (𝜃) − 𝑦𝑟, 𝜎𝑟
)

, (3)

with  (𝜇, 𝜎) denoting the normal distribution. Here, 𝑓𝑟 (𝜃) is a com-
putational model that predicts isotopic ratios given a set of parameter
values. The model 𝑓 depends on the nature of the problem and often
incorporates implicit assumptions, such as the number of components
in a mixed sample. The standard deviation 𝜎𝑟 of each ratio captures
all sources of uncertainty, such as measurement uncertainty and model
uncertainty. We use 𝜎𝑟 = 0.1 ⋅𝑦𝑟 for all isotope ratios because a detailed
uncertainty analysis is beyond the scope of the present study.

Since Eq. (1) is usually analytically intractable, numerical methods
are commonly used to approximate the (unnormalized) posterior dis-
tribution. A popular class of methods are Markov chain Monte Carlo
algorithms, which construct a sequence (called Markov chain) of sam-
ples that converges to the target distribution. Each sample in the chain
depends only on the previous sample, although the exact prescrip-
tion for deriving a new sample from the previous one depends on
the specific algorithm. As these algorithms include a pseudo-random
element, one typically creates multiple chains with different starting
values to avoid statistical anomalies and enable convergence checking.
After sampling, the sample chains are merged to form the samples of
the posterior distribution.

In this study, we use the NUTS algorithm as implemented in
PyMC [9], a probabilistic programming library for Python. To im-
prove the performance, each chain starts with a tuning phase, during
which parameters (e.g., step size) of the algorithm are optimized. The
samples drawn during this phase are discarded afterwards and do not
count towards the posterior distribution samples.

2.1. Surrogate modeling

In the framework described above, the likelihood uses a computa-
tional model to calculate isotopic ratios given reactor parameters, a task
that is typically done with Monte Carlo reactor physics codes at a rather
large computational cost. Additionally, MCMC algorithms evaluate the
likelihood very frequently, which leads to an immense computational
cost if Monte Carlo neutron transport models are used. Furthermore,
the samples are drawn sequentially, as each point in a chain depends
on the previous one, which limits the potential for parallelization and

Table 1
Isotopic ratios chosen by the selection algorithm. These ratios were used as evidence
for the Bayesian inference test cases.

Cd Gd Nb Pu Sm Sn
𝐶𝑑−112
𝐶𝑑−110

𝐺𝑑−154
𝐺𝑑−155

𝑁𝑏−94
𝑁𝑏−93𝑚

a 𝑃𝑢−242
𝑃𝑢−241

𝑆𝑚−151
𝑆𝑚−154

𝑆𝑛−126
𝑆𝑛−117

𝐶𝑑−114
𝐶𝑑−110

𝐺𝑑−155
𝐺𝑑−158

𝑁𝑏−93
𝑁𝑏−94

𝑃𝑢−240
𝑃𝑢−239

𝑆𝑚−147
𝑆𝑚−152

𝑆𝑛−124
𝑆𝑛−122

𝐶𝑑−116
𝐶𝑑−110

𝐺𝑑−156
𝐺𝑑−158

𝑁𝑏−93
𝑁𝑏−93𝑚

a 𝑃𝑢−238
𝑃𝑢−241

𝑆𝑚−147
𝑆𝑚−148

𝑆𝑛−122
𝑆𝑛−120

– 𝐺𝑑−160
𝐺𝑑−157

– – – –

Ba Bi Nd Pd Se Te
𝐵𝑎−132
𝐵𝑎−137𝑚

a 𝐵𝑖−213
𝐵𝑖−211

a 𝑁𝑑−146
𝑁𝑑−143

𝑃𝑑−107
𝑃𝑑−106

𝑆𝑒−79
𝑆𝑒−82

𝑇 𝑒−126
𝑇 𝑒−122

𝐵𝑎−136
𝐵𝑎−134

– 𝑁𝑑−144
𝑁𝑑−148

𝑃𝑑−104
𝑃𝑑−108

𝑆𝑒−79
𝑆𝑒−77

𝑇 𝑒−124
𝑇 𝑒−122

Dy Er I Pb Po Th
𝐷𝑦−161
𝐷𝑦−164

𝐸𝑟−170
𝐸𝑟−168

𝐼−127
𝐼−129

𝑃𝑏−209
𝑃𝑏−214

a 𝑃𝑜−211
𝑃𝑜−215

a 𝑇ℎ−229
𝑇ℎ−228

a These ratios were not used in the classification model due to issues with the surrogate
model training.

thus significantly increases the runtime along with the computational
cost.

To address these computational limitations, we use surrogate mod-
eling to replace the Monte Carlo simulation of the reactor physics with
a machine learning model that predicts the desired isotope ratios at
only a fraction of the computational cost. In previous work, we have
shown that Gaussian process regression (GPR) is a suitable method
for training such surrogate models [10]. A particular advantage is the
relatively low number (≲ 500) of training data necessary to achieve
good model predictions. The training data, i.e. reactor parameter and
nuclide density pairs, are generated with Monte Carlo reactor physics
calculations using state-of-the-art software packages (SERPENT 2 [11],
OpenMC [12] or ONIX [13]).

2.2. Isotopic ratio selection

Nuclear waste contains many different elements and isotopes, pro-
viding a potential basis for numerous isotope ratios, many of which
are not necessarily sensitive to the inference parameters. To obtain
meaningful results with Bayesian inference, it is prudent to select a set
of suitable isotope ratios. In general, there are two ways of doing this.
On the one hand, a careful study of the physical properties governing
the time evolution of isotopic ratios can reveal a sensitivity to specific
inference parameters. On the other hand, algorithms that compare
quantifiable metrics for different sets of isotopic ratios can select the
best set without analyzing the physical properties. While both options
have their merits, we chose an automated approach in this work to
facilitate selecting a larger set of ratios.

In our approach, the selection metric is the maximum of the relative
standard deviations {�̂�𝑟𝑒𝑙,𝑖} of the marginal distributions of each param-
eter 𝜃𝑖 in a given likelihood 𝑝 (𝑦|𝜃). Each marginal distribution 𝑝(𝜃𝑖) is
approximated by evaluating the likelihood on a grid of values of 𝜃 and
summing over each dimension of the grid except 𝑖. From each marginal
distribution we compute �̂�𝑟𝑒𝑙,𝑖 = �̂�𝑖∕�̂�𝑖 and then calculate the selection
metric �̂�𝑟𝑒𝑙 = max({�̂�𝑟𝑒𝑙,𝑖}). This metric is computed with likelihoods of
pairs of ratios, for all possible pair-wise combinations of a set of pre-
selected isotopic ratios. The ratio pair with the lowest �̂�𝑟𝑒𝑙 is selected as
the best pair. Given that the likelihood is seen as a function of 𝜃 with
fixed 𝑦, we select the best ratio pair for each point 𝑦𝑡𝑒𝑠𝑡 on a grid of
test points that covers the parameter space. The union of these isotope
ratio pairs forms the final set of isotopic ratios.

This approach is limited by the curse of dimensionality because grid
sampling scales exponentially with the number of dimensions (here:
inference parameters). Therefore, we limit the explored parameter
space to two inference parameters: burnup and TSI. Table 1 shows the
selected isotopic ratios, which we use in this study. Although these
isotopic ratios are not strictly independent, we nonetheless treat them
as independent in Eq. (3).

One must note that we have only considered a pre-selected set of
isotopic ratios where 90% of values from a set of 4000 simulations lie
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within the interval [1∕20, 20], as the precision of measuring small ratios
is typically related to counting statistics [14], and we have assumed
that these isotopes can be measured.

3. Testing inference models

In the absence of actual measurement data from nuclear waste, we
use synthetic test data generated by evaluating the Gaussian process
(GP) surrogate models on a given set of parameter values, referred to
as ground truth. This procedure allows us to evaluate the performance
of the subsequent inference in a systematic manner.

We explore two different likelihood models that, although not as
complex as a realistic application scenario, represent a significant
increase in complexity compared to our previous work. These mod-
els illustrate that the general Bayesian approach can be adapted to
different use cases that require different model assumptions. The first
model reconstructs the source reactor type of a sample of spent fuel or
reprocessing waste, as well as some irradiation parameters. This model
is referred to as the classification model. The second model reconstructs
the irradiation parameters of a sample that is a mixture of high-level
reprocessing waste from two batches of fuel from the same reactor. This
model is referred to as the mixture model.

The classification model considers four irradiation parameters: fuel
burnup, time since irradiation(TSI), initial enrichment and (average) power
density. The model considers three different reactor types: a graphite-
moderated Magnox-type reactor, a pressurized light-water reactor
(PWR) and a pressurized heavy-water reactor (PHWR). The Magnox
type reactor is modeled after the 5 MWe reactor in North Korea. The
PWR is modeled after the German Gemeinschaftskernkraftwerk Neckar-
westheim II (GKN-II) and the PHWR is a CANDU-6 model. Training
data for the surrogate models was generated for each reactor using
the simulation tools OpenMC and ONIX and the ENDF/B-VIII.0 [15]
nuclear data library.

In terms of the inference framework, the model function 𝑓𝑟 of one
isotope ratio 𝑅𝑟 =

𝑁𝑖
𝑁𝑗

(see Eq. (3)) is formulated as follows:

𝑓𝑟 (𝛼, 𝜃) =
∑

𝑚 𝛼𝑚 ⋅ 𝐹𝑖,𝑚(𝜃𝑚)
∑

𝑚 𝛼𝑚 ⋅ 𝐹𝑗,𝑚(𝜃𝑚)
, (4)

with 𝛼𝑚𝜖{0, 1} and 𝑚𝜖 {Magnox, PWR, PHWR}. The 𝐹{𝑖,𝑗},𝑚 are GP
surrogate models that compute nuclide densities for each respective
reactor type, given a vector 𝜃𝑚 of irradiation parameters. The variable
𝛼𝑚 encodes the reactor type. It is 0 or 1 depending on which reactor
label is sampled, i.e., if PHWR is sampled then 𝛼𝑃𝐻𝑊𝑅 is 1 and the
others are 0. The irradiation parameters are sampled independently for
each reactor, as different reactor types have different ranges of possible
values. Table 2 shows the limits of the uniform prior distributions of
each inference parameter. These ranges reflect typical values for each
reactor, with some exceptions. The burnup range of the PWR model
is adjusted to the typical values of CANDU and Magnox reactors for
the sake of comparability between the three models. The lower limit
of the TSI is set to 1000 d given that spent fuel requires a significant
time to cool before it can be handled further (e.g. to analyze a sample).
The initial enrichment level is varied uniformly so as to cover a broad
range of possibilities, although this parameter could be constrained by
other sources of information. In practice, these parameter ranges as well
as the type of distribution would be modified to reflect the state of
knowledge about the sample prior to the analysis.

For this model, the simulated test dataset has 200 test points per
‘‘true’’ reactor type, i.e., a total of 600 test points. For each test
point, the ground truth parameter values are pseudo-randomly sampled
according to the distributions in Table 2, so as to cover the parameter
space evenly.

The mixture model considers a sample composed of waste from two
batches of fuel irradiated in a PWR reactor. This model is intended to
explore the potential of the Bayesian approach to extract information

Table 2
Prior distributions of the classification scenario. The reactor type is sampled with a
categorical distribution that assigns equal probability to each label. Otherwise, the
ranges denote a uniform distribution with 𝑝(𝑥) = 1

𝑏−𝑎
for 𝑥 𝜖 [𝑎, 𝑏] and 0 elsewhere.

Magnox PHWR PWR

Reactor type 𝑝 = 1∕3 𝑝 = 1∕3 𝑝 = 1∕3
Burnup [MWd/kg] 0.1–8 0.1–8 0.1–8
TSI [d] 1000–10000 1000–10000 1000–10000
Power density [kW/l] 0.01–1 1–20 20–160
Initial enrichment [%at] 0.72–1.5 0.72–1.5 1–5

Table 3
Limits of the prior distributions used in the mixture
scenario. The ranges denote the lower and upper limits
of a uniform distribution.

Parameter Prior limits

Burnup 1 [MWd/kg] 0.5–50
TSI 1 [y] 0.1–60
Burnup 2 [MWd/kg] 0.5–50
TSI 2 [y] 0.1–60
Mixing factor 0.1–15

from samples of mixed waste, although realistic application scenarios
would need to consider mixtures of more than two batches.

The inference parameters 𝜃1 and 𝜃2 are burnup and time since irradi-
ation (TSI) of batch 1 and batch 2, respectively, and the model function
is:

𝑓𝑟
(

𝛼, 𝜃1, 𝜃2
)

=
𝛼 ⋅ 𝐹𝑖(𝜃1) + 𝐹𝑖(𝜃2)
𝛼 ⋅ 𝐹𝑗 (𝜃1) + 𝐹𝑗 (𝜃2)

. (5)

The parameter 𝛼 = 𝑛1∕𝑛2 is the mixing ratio of the amounts of material
of each batch. For example, 𝛼 = 0.5 implies a mixing ratio of 1:2,
meaning there is twice the amount of waste from batch 2 in the sample
as there is from batch 1.

The training data for the surrogate models 𝐹 was generated with
an infinite lattice model of the Kernkraftwerk Obrigheim implemented
in SERPENT 2, using the ENDF/B-VII.1 [16] nuclear data library.
The limits of the uniform prior distributions are given in Table 3.
They reflect the potential parameter space of a typical PWR used for
electricity production.

For the mixture model, we create test cases systematically, in order
to study specific combinations of parameters, e.g., a mixture of a ‘‘low-
burnup’’ and a ‘‘high-burnup’’ batch with varying mixing factors. These
combinations of ‘‘true’’ parameter values are listed in Table 4.

4. Results

The performance of the two inference models is assessed in terms of
whether the ground truth of a test point was successfully inferred. To
determine whether the inference was successful, we compute highest
density regions (HDRs) of the marginal posterior distribution of each
parameter. If the known ground truth of a parameter lies within the
HDR, the parameter is considered to have been reconstructed success-
fully. The HDR is the smallest interval that contains a given proportion
(here: 95%) of the probability mass [8]. If the posterior distribution
has several separate regions with a high probability density, the HDR
is divided into several intervals that together contain at least 95% of
the probability mass. In such cases, the reconstruction is considered
successful if the ground truth lies in one of the intervals.

4.1. Classification model

Fig. 1 shows the results of applying the classification model to a
single test point. The bar chart shows the count number of each label
in the reactor type samples. In the example, the predicted reactor
type is ‘‘Magnox’’, as the number of ‘‘Magnox’’ samples is highest. The
‘‘PWR’’ label was already discarded during the tuning phase of the
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Fig. 1. Posterior distributions of a successful classification test run. The bar graph shows the sampled reactor labels and the four graphs below show the marginal posterior
distributions of the corresponding parameters. The predicted reactor type is Magnox and horizontal lines indicate the HDR of the posteriors of the Magnox parameters. The true
reactor type is Magnox and the true parameter values are indicated by the dotted vertical lines in each graph.

Fig. 2. Confusion matrix of the classification model evaluated on the test dataset.

Bayesian inference and does not feature at all. The ground truth lies
inside the HDR of all four ‘‘Magnox’’ parameter posteriors, making this
an example where the inference works well. One can observe split
HDRs in the enrichment and the power density parameters that indicate
that a lower power density and higher enrichment are also a potential
solution.

Fig. 2 shows the confusion matrix of the reactor type classification.
Overall, the misclassification rate is very low. There is only one case of
‘inconclusive’ classification, in which the highest number of counts of
the reactor type samples is shared by two labels. There is also one case
of misclassification, in which a ‘pwr’ sample is mistakenly identified as
a ‘phwr’ sample.

Table 5 tallies the number of successful reconstructions per reactor
type and per parameter. Additionally, the table tallies the test points
into categories complete, partial and none, meaning either all, some or
no parameters were reconstructed successfully. In general, the success
rate is high (above 90%). There is no significant difference between the
burnup, TSI and enrichment parameters, although the power density
parameter has a slightly lower success rate. The PHWR reactor type
has the highest rate of complete successes, although the difference to
the other two reactor types is small.

In addition to the binary true/false success rate, we analyze the
widths of the HDRs relative to the widths of the uniform prior distribu-
tions. This quantity indicates if the knowledge of a parameter is more
precise after (posterior) the inference compared to before (prior). A
smaller relative width indicates a greater knowledge gain. Since many

Fig. 3. Distribution of cumulative HDR widths relative to the prior widths of the
classification model. The cumulative HDR width is the sum of widths of the HDRs of
each posterior, and the prior width is the distance between the lower and upper limits
of the respective uniform distribution. Includes all test points except the inconclusive
test point.

Table 4
Ground truth scenarios of the test dataset for the mixture inference. Each scenario is
labeled according to whether the true values are high or low with respect to the range
of possible parameters. Each scenario is investigated with a range of different mixing
factors: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, which
are applied to the batches denoted with 1.

Burnup 1 TSI 1 Burnup 2 TSI 2

[MWd/kg] [y] [MWd/kg] [y]

Ll-Lla 1.5 6 3 3
Lh-Ll 3 20 1.5 6
Lh-Lh 1.5 40 3 30
Hl-Hl 40 10 45 3
Hh-Hl 40 30 45 6
Hh-Hh 40 40 45 30
Hl-Ll 40 12 1.5 6
Hl-Lh 40 6 1.5 30
Hh-Ll 40 30 1.5 6
Hh-Lh 40 30 1.5 25

a Upper case letters indicate burnup and lower case letters indicate cooling time. H/h
stands for a high value and L/l stands for a low value, respective to the range of
possible values.

test points include posteriors with split HDRs, we define the cumulative
HDR width as the sum of the widths of all intervals in a split HDR.
Fig. 3 shows boxplots of the cumulative HDR widths relative to the
prior widths. Except for a few outliers, all four parameters have relative
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Fig. 4. Posterior distributions of the successful mixture test run Hh-Ll with 𝛼 = 0.1. The vertical lines indicate the ground truth.

widths significantly lower than one, indicating a significant gain in
information. The spread of relative widths does not vary much across
reactor types, except for the enrichment parameter. Here, the PWR test
points show much lower relative HDR widths than PWR and Magnox
test points. This feature is due to the larger prior width of the PWR type
reactor and disappears when comparing the absolute widths.

In summary, the classification model performs well on the simulated
test data, being able to discriminate between three different reactor
models and simultaneously infer irradiation parameters.

4.2. Mixture model

The analysis of inference data of the mixture model differs slightly
from the classification model. The model function 𝑓 (see Eq. (5)) treats
the sample (𝜃1, 𝜃2, 𝛼) as equivalent to (𝜃2, 𝜃1, 1∕𝛼). Therefore, switched
parameter values combined with an inverted mixing factor will be
treated equally by the sampling algorithm, and the posteriors associated
with ‘‘batch 1’’ may contain numerous samples belonging to ‘‘batch
2’’ and vice versa. To determine HDRs, the posterior samples are first
merged by parameter type, i.e., the samples of the two burnup param-
eters are combined into one set and the TSI samples are combined as
well, and the HDRs are computed on the joined sets of samples.

Fig. 4 shows an example of such results. The HDRs overlap with the
true values, indicating a successful reconstruction. The two intervals
of the mixing factor indicate two solutions, around 10 and 0.1 respec-
tively, both of which correspond to the same mixing ratio, i.e. 1:10 or
10:1. One must note that it is also possible to obtain a single HDR for
a parameter type. In that case, the reconstruction would be deemed
successful if, e.g., both true burnup values lie within this interval.

By calculating HDRs of the marginal distributions independently
for each parameter, information about which intervals belong together
is lost. That is, one can neither say whether the lower burnup HDR
belongs to the lower or the higher TSI HDR, nor can one determine
whether the lower or the higher burnup batch has the higher mixing
fraction. A potential solution is proposed in the next section.

Fig. 5 shows the inference results for the test points from Table 4
in a color coded matrix. One can observe that the success of the
reconstruction depends on the true values of burnup and TSI. Test
points with high burnup are reconstructed successfully more often than
test points with low burnup. Test points with mixed high and low
burnup are generally reconstructed successfully, with some exceptions
when the mixing fraction of the low burnup batch is particularly low
(see the right upper corner in Fig. 5). The test points with two low
burnup batches are mostly not reconstructed successfully. In all of the
test points denoted with two ‘‘L’’, 99% of the posterior probability
mass of the burnup posterior lies below 15 MWd/kg. Such results
can be interpreted to indicate a low burnup, even if a more precise
reconstruction of the parameter value does not work.

In summary, the success of the Bayesian inference with the mixture
model depends on the nature of the ground truth, particularly on
whether the burnup values are high or low, and on the mixing fraction.

5. Discussion

This study improves upon previous work on this topic in two ways.
First, the ‘‘single-batch’’ model is successfully extended from inferring

Fig. 5. Success matrix of the mixture inference model. The 𝑦-axis shows the relation-
ship of the true parameter values. Upper case letters indicate burnup and lower case
letters indicate cooling time. H/h stands for a high value and L/l stands for a low
value, respective to the range of possible values. The colors indicate whether both
burnup and TSI, only burnup, only TSI or neither were reconstructed successfully.

Table 5
Successful parameter reconstruction in the classification scenarios sorted by true reactor
type. 200 test points are considered per reactor type.

Magnox PHWR PWR Total

Burnup 197 195 194 586
Power density 191 195 192 578
TSI 195 197 194 586
Enrichment 199 198 189 586

Complete 191 195 187 573
Partial 8 3 11a 22
None 1 2b 2 5

a The PWR tally includes the misclassified test point in the partial category because
burnup and TSI are reconstructed successfully.
b The inconclusive result is counted as an unsuccessful reconstruction here.

burnup and TSI of a sample from a known reactor to inferring burnup,
TSI, initial enrichment and power density; and discriminating between
three different reactor types. Second, we evaluate the performance of
the mixture model on a larger set of test cases. The results highlight
the potential of using a Bayesian framework to infer information on
the origin and the irradiation history of samples of nuclear waste.

However, the inference models in this study do not reflect the
complexity of the problem that needs to be expected in a realistic
application of the framework. Rather, this study is an exploratory
analysis to gauge the potential of the framework. To put the results
into perspective, there are several factors to address.

In this study, we have used a selection algorithm to choose a set of
isotopic ratios, instead of considering the physical attributes of various
nuclides. This new selection process lead to a larger set of isotopic
ratios being used than in other studies (see [4,5]). Given the successful
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inference results obtained on the test datasets, especially with the
classification model, this approach shows promise as a methodology
for selecting suitable isotopic ratios in an automated manner.

The present study treats uncertainties in a simplified manner, ig-
noring several challenges associated with measuring isotopic ratios. In
the likelihood 𝑝(𝑦|𝜃), both model and measurement uncertainty of an
isotopic ratio are accounted for by the standard deviation 𝜎𝑟, which we
have assumed to be 10% of the ratio value for all ratios. In practice,
one would expect different uncertainties for different ratios because the
challenges of measuring isotopic ratios with mass spectroscopy, such
as isobaric interferences, apply to some isotopes but not all. Similarly,
the nuclear data libraries that determine the accuracy of the model
predictions are available with varying degrees of precision for different
nuclides. Therefore, one should not assume that the results obtained in
this simulation-based study with the present list of isotopic ratios will
translate directly into practice.

While a detailed study of uncertainty is beyond the scope of this pa-
per, it is worth noting that 𝜎𝑟 in Eq. (3) can be determined individually
for each measurement. Thus, it is possible to account for measurement
and model uncertainty. It is to be expected that different values of
𝜎𝑟 will alter the inference results, but we have not systematically
investigated this effect.

The inference framework described in this work is not dependent on
a specific list of isotopic ratios. The selection process can be repeated
and adapted to the circumstances of different application scenarios.
Issues of measurability and uncertainty can be addressed either by
applying stricter pre-selection criteria or by using ratio-specific 𝜎𝑟 in
the likelihoods evaluated by the selection algorithm. Future research
should investigate the effect of measurement and model uncertainty
more rigorously.

Furthermore, the selection algorithm only considered the param-
eters burnup and TSI, a limitation due to the computational cost of
the algorithm. An algorithm that overcomes these issues could consider
other parameters and lead to better results. Future studies should seek
to further optimize the isotopic ratio selection and could compare
different selection methods.

This study has used uniform prior distributions to describe a general
lack of knowledge about the parameters. Since priors play an important
role in Bayesian analysis, they would be chosen carefully for each
different application of the framework. For example, the enrichment
level typically depends on the reactor design and could be narrowed
down to several options by investigating other sources of information.
Then, a non-uniform prior could be used to describe this information,
e.g., a series of overlay normal distributions with peaks centered on the
possible enrichment levels.

We have attempted to break down the results of each inference
into quantities that can be summarized as an overview of the general
performance of a likelihood model. The results of Bayesian inference
are posterior distributions, which in many cases cannot be easily pa-
rameterized and are therefore difficult to assess systematically on a
large scale with algorithmic means. In an application context, an an-
alyst could use many different tools to extract information from the
posterior, as well as make adjustments to the modeling and sampling
algorithm to obtain a nuanced result. For example, the results of an
inference with our mixture model could be further analyzed with
clustering algorithms, e.g. k-means or Gaussian mixture, to determine
the correlation between the reconstructed burnup and cooling time
intervals.

6. Conclusion

In this exploratory analysis, we have tested the Bayesian inference
framework with two different likelihood models, demonstrating the
potential and versatility of the Bayesian approach. We have shown that,
in principle, it is possible to discriminate between three potential source
reactors (Magnox, PWR, and PHWR) and simultaneously infer up to

four parameters (burnup, TSI, enrichment and power density). It is also
possible to differentiate the irradiation parameters of components of a
mixture of radioactive waste from two different irradiation campaigns
in a reactor. However, the framework requires further testing and
optimization, as well as a rigorous uncertainty analysis before it can
fulfill its potential as a versatile tool for reconstructing parameters
of interest from samples of nuclear waste. Given that both nuclear
archaeology and nuclear forensics benefit from this capability, the
methodology described in this work merits further development and
the present study provides a basis for future research.
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