• 제목/요약/키워드: Nuclear plate fuel

검색결과 66건 처리시간 0.02초

Channel Gap Measurements of Irradiated Plate Fuel and Comparison with Post-Irradiation Plate Thickness

  • James A. Smith;Casey J. Jesse;William A. Hanson;Clark L. Scott;David L. Cottle
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2195-2205
    • /
    • 2023
  • One of the salient nuclear fuel performance parameters for new fuel types under development is changes in fuel thickness. To test the new commercially fabricated U-10Mo monolithic plate-type fuel, an irradiation experiment was designed that consisted of multiple mini-plate capsules distributed within the Advanced Test Reactor (ATR) core, the mini-plate 1 (MP-1) experiment. Each capsule contains eight mini-plates that were either fueled or "dummy" plates. Fuel thickness changes within a fuel assembly can be characterized by measuring the gaps between the plates ultrasonically. The channel gap probe (CGP) system is designed to measure the gaps between the plates and will provide information that supports qualification of U-10Mo monolithic fuel. This study will discuss the design and the results from the use of a custom-designed CGP system for characterizing the gaps between mini-plates within the MP-1 capsules. To ensure accurate and repeatable data, acceptance and calibration procedures have been developed. Unfortunately, there is no "gold" standard measurement to compare to CGP measurements. An effort was made to use plate thickness obtained from post-irradiation measurements to derive channel gap estimates for comparison with the CGP characterization.

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

Developing an interface strength technique using the laser shock method

  • James A. Smith;Bradley C. Benefiel;Clark L. Scott
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.432-442
    • /
    • 2023
  • Characterizing the behavior of nuclear reactor plate fuels is vital to the progression of advanced fuel systems. The states of pre- and post-irradiation plates need to be determined effectively and efficiently prior to and following irradiation. Due to the hostile post-irradiation environment, characterization must be completed remotely. Laser-based characterization techniques enable the ability to make robust measurements inside a hot-cell environment. The Laser Shock (LS) technique generates high energy shockwaves that propagate through the plate and mechanically characterizes cladding-cladding interfaces. During an irradiation campaign, two Idaho National Laboratory (INL) fabricated MP-1 plates had a fuel breach in the cladding-cladding interface and trace amounts of fission products were released. The objective of this report is to characterize the cladding-cladding interface strengths in three plates fabricated using different fabrication processes. The goal is to assess the risk in irradiating future developmental and production fuel plates. Prior LS testing has shown weaker and more variability in bond strengths within INL MP-1 reference plates than in commercially produced vendor plates. Three fuel plates fabricated with different fabrication processes will be used to bound the bond strength threshold for plate irradiation insertion and assess the confidence of this threshold value.

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.