• Title/Summary/Keyword: Nuclear phase out

Search Result 177, Processing Time 0.025 seconds

Pool-Boiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.337-342
    • /
    • 1996
  • The pool-boiling critical heat flux (CHF) of water on small flat plates has been experimentally investigated focusing on the effects of the inclination angle and size of the heated surface under near atmospheric pressure. The second-phase experiment was accomplished to find out the general CHF behavior for over-all inclination angles from -90$^{\circ}$ to 90$^{\circ}$using two plate-type test sections (30$\times$150 mm and 40$\times$150 mm) submerged in a slightly subcooled water pool. Test results generally confirm the first-phase findings and show little effect of inclination angle for inclined upward-facing cases. CHF position moves to lower position with the increase of the heater characteristic size and inclination angle(from -30$^{\circ}$to 60$^{\circ}$).

  • PDF

THERMAL SHOCK FRACTURE OF SILICON CARBIDE AND ITS APPLICATION TO LWR FUEL CLADDING PERFORMANCE DURING REFLOOD

  • Lee, Youho;Mckrell, Thomas J.;Kazimi, Mujid S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.811-820
    • /
    • 2013
  • SiC has been under investigation as a potential cladding for LWR fuel, due to its high melting point and drastically reduced chemical reactivity with liquid water, and steam at high temperatures. As SiC is a brittle material its behavior during the reflood phase of a Loss of Coolant Accident (LOCA) is another important aspect of SiC that must be examined as part of the feasibility assessment for its application to LWR fuel rods. In this study, an experimental assessment of thermal shock performance of a monolithic alpha phase SiC tube was conducted by quenching the material from high temperature (up to $1200^{\circ}C$) into room temperature water. Post-quenching assessment was carried out by a Scanning Electron Microscopy (SEM) image analysis to characterize fractures in the material. This paper assesses the effects of pre-existing pores on SiC cladding brittle fracture and crack development/propagation during the reflood phase. Proper extension of these guidelines to an SiC/SiC ceramic matrix composite (CMC) cladding design is discussed.

Experiments and MAAP4 Assessment for Core Mixture Level Depletion After Safety Injection Failure During Long-Term Cooling of a Cold Leg LB-LOCA

  • Kim, Y. S.;B. U. Bae;Park, G. C.;K. Y. Sub;Lee, U. C .
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.91-107
    • /
    • 2003
  • Since DBA(Design Basis Accidents) has been studied rather separately from SA(Severe Accidents) in the conventional nuclear reactor safety analysis, the thermal hydraulics during transition between DBA and SA has not been identified so much as each accident itself. Thus, in this study, the thermal hydraulic behavior from DBA to the commencement of SA has been experimentally and analytically investigated for the long-term cooling phase of LB-LOCA(Large-Break Loss-of-Coolant Accident). Experiments were conducted for both cases of the loop seal open and closed in an integral test loop, named as SNUF (Seoul National University Facility), which was scaled down to l/6.4 in length and 1/178 in area of the APR1400 (Advanced Power Reactor 1400MWe). The core mixture level was a main measured value since it took major role in the fuel heat-up rate, the location of fuel melting initiation and the channel blockage by melting material during SA. Experimental results were compared to MAAP4.03 to assess its model of calculating the core mixture level. MAAP4.03 overestimates the core two- phase mixture level because sweep-out and spill-over and the measures to simulate the status of loop seal are not included, which is against the conservatism. Thus, it is recommended that MAAP4.03 should be improved to simulate the thermal hydraulic phenomena, such as sweep-out, spill-over and the status of loop seal.

Feasibility Analysis of Alternative Electricity Systems by 2030 in the Post-Fukushima Era

  • Park, Nyun-Bae;Lee, Sanghoon;Han, Jin-Yi;Jeon, Eui Chan
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.59-68
    • /
    • 2014
  • The Fukushima nuclear accident in 2011 had an extensive impact on the national electricity plans. This paper outlines alternative electricity scenarios that meet the goals of nuclear phase-out and greenhouse gas (GHG) emission reduction. This paper also analyzes the results of each scenario in respect to the electricity mix, GHG emissions, costs and employment effects. The Long-range Energy Alternatives Planning system (LEAP) model was used to simulate the annual electricity demand and supply system from 2011 to 2030. The reference year was 2009. Scenarios are reference (where existing plans are continued), A1, A2, B1, B2, and C2 (where the levels of demand management and nuclear phase-out are different). The share of renewable energy in the electricity mix in 2030 for each scenario will be increased from about 1% in 2009 to 8% in the reference scenario and from 11% to 31% in five alternative scenarios. Total cumulative cost increases up to 14% more than the reference scenario by replacing nuclear power plants with renewable energy in alternative scenarios could be affordable. Deploying enough renewable energy to meet such targets requires a roadmap for electricity price realization, expansion of research, development and deployment for renewable energy technologies, establishment of an organization dedicated to renewable energy, and ambitious targets for renewable energy.

Experiment investigation on flow characteristics of open natural circulation system

  • Qi, Xiangjie;Zhao, Zichen;Ai, Peng;Chen, Peng;Sun, Zhongning;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1851-1859
    • /
    • 2022
  • Experimental research on flow characteristics of open natural circulation system was performed, to figure out the mechanism of the open natural circulation behaviors. The influence factors, such as the heating power, the inlet subcooled and the level of cooling tank on the flow characteristics of the system were examined. It was shown that within the scope of the experimental conditions, there are five flow types: single-phase stable flow, flash and geyser coexisting unstable flow, flash stable flow, flash unstable flow, and flash and boiling coexisting unstable flow. The geyser flow in flash and geyser coexisting unstable flow is different from classic geysers flow. The flow oscillation period and amplitude of the former are more regular, is a newly discovered flow pattern. By drawing the flow instability boundary diagram and sorting out the flow types, it is found that the two-phase unstable flow is mainly characterized by boiling and flash, which determine the behavior of open natural circulation respectively or jointly. Moreover, compared with full liquid level system, non-full liquid level system is more prone to boiling phenomenon, and the range of heat flux density and undercooling degree corresponding to unstable flow is larger.

AN EXPERIMENTAL STUDY ON AN ELECTROCHEMICAL REDUCTION OF AN OXIDE MIXTURE IN THE ADVANCED SPENT-FUEL CONDITIONING PROCESS

  • Jeong, Sang-Mun;Park, Byung-Heung;Hur, Jin-Mok;Seo, Chung-Seok;Lee, Han-Soo;Song, Kee-Chan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.183-192
    • /
    • 2010
  • An electrochemical reduction of a mixture of metal oxides was conducted in a LiCl molten salt containing 3 wt% $Li_2O$ at $650^{\circ}C$. The oxide reduction was carried out by applying a current to an electrolysis cell, and the $Li_2O$ concentration was analyzed during each run. The concentration of $Li_2O$ in the electrolyte bulk phase gradually decreases according to Faraday's law due to a slow diffusion of the $O^{2-}$ ions. A hindrance effect of the unreduced metal oxides was observed for the reduction of the uranium oxide. Cs, Sr, and Ba of high heat-load fission products were diffused into and accumulated in the salt phase as predicted with thermodynamic consideration.

Mechanistic Model of Dryout in a Heat-Generating Porous Medium

  • Kim, Seong-Ho;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.537-542
    • /
    • 1996
  • In the present work the influence of various physical parameters on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these parameters, the variation of both liquid volumetric fraction and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the parameters such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these parameters, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.

  • PDF

Review on Gas-Voiding Models for HCDA(Hypothetical Core Disruptive Accident) Initiating Phase in LMR Analysis (I)

  • Chang, W.P.;Kwon, Y.M.;Hahn, D.H.;Suk, S.D.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.51-65
    • /
    • 1999
  • The present review report introduces the existing analysis codes and physical modeling of two-phase flow associated with initiating event of HCDA in Liquid Metal Reactors for the effective study in the future, because the related research has not been systematically carried out in Korea compared with other areas. The description in this report is specifically addressed to the results yielded from careful review of the technical concepts on the two-phase flow modeling in the SAS2A code which was developed in ANL. The report is prepared in 2 parts based on the definite physical phenomena. The liquid slug and gas behavior models are main representations in the part (I) and (II), respectively. In this regard, it is expected that this report provide a fundamental knowledge on the two-phase flow model in LMR and, thus, contribute to establishment of the necessary HCDA analysis technology concerned with the LMR development in Korea.

  • PDF

The Apparent Mass Capacity Method for Transient Diffusion Problems with Change of Phase

  • Kim, Yongsoo;Wonmok Jae;D. R. Olander
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.643-650
    • /
    • 1995
  • A numerical method for treating transient diffusion Involving change of phase is presented. In other methods of dealing with this class of problems, the mass flux balance at the moving phase boundary requires explicit treatment of two distinct phases. The technique, originating from the apparent heat capacity method in transient heat conduction with the phase change, avoids the difficulty by transferring the concentration discontinuity at the boundary to smoothed physical property variations near the moving front. This technique accomodates the nonlinearities which preclude use of analytical solutions. It was tested against known analytical solutions for simple cases and turned out to be quite accurate.

  • PDF

Germany Goes Green - Innovations towards a Sustainable Regional Development

  • Gruehn, Dietwald
    • World Technopolis Review
    • /
    • v.1 no.4
    • /
    • pp.230-239
    • /
    • 2013
  • The paper deals with recent paradigm shift in German environmental policy, fundamentally modifying the German society towards a sustainable future development. Key elements of this development are forceful climate protection measures to contribute to global climate protection strategy and to fulfil international conventions, supplemented by a comprehensive strategy to promote the adaptation to climate change, the nuclear power phase out in the medium term, and innovative landscape and regional planning projects to strengthen regional identity and economic power. All this components are,complemented by a financial support program including incentives, tax reductions, and research funding.