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Abstract

A numerical method for treating transient diffusion involving change of phase is
presented. In other methods of dealing with this class of problems, the mass flux balance at
the moving phase boundary requires explicit treatment of two distinct phases. The technique,
originating from the apparent heat capacity method in transient heat conduction with the phase
change, avoids the difficulty by transferring the concentration discontinuity at the boundary to
smoothed physical property variations near the moving front. This technique accomodates the
nonlinearities which preclude use of analytical solutions. It was tested against known
analytical solutions for simple cases and turned out to be quite accurate.

I. Introduction

Solutions of problems involving transient heat conduction accompanied by a solld-liquid
transformation present difficulties not encountered in single-medium situations because of the
moving phase-change boundary and the production or removal of heat at this location.
Analytical solutions are available only for simple boundary conditions and for temperature-
independent thermal properties[1-9]. Some practically-important processes, such as pulse
surface heating by laser or electron beam irradiation, or welding in complex geometries are not
amenable to analytic solution and must be dealt with numerically. Precluding the use of
commercial partial differential equation solvers, the presence of the moving phase boundary
requires that the user must develope and implement the numerical method[10-14].

Metal oxidation problems that involve a change of phase from metal to oxide within the
material represent a moving-front situation which is formally identical to that associated with
progression of a melt layer in a heated solid. The analog of the heat of fusion is the difference
in the oxygen concentrations on the two sides of the phase boundary. This difference is a
thermodynamic quantity determined by the phase diagram of the metal-oxygen system. By
identifying common dimensionless parameters in the two processes, the oxide-metal transition
can be treated in the same way as the solid-liquid transformation.

Recently several authors [15-18] have published new schemes, so-called 'apparent’ heat
capacity method, which enable the users to deal with the transient heat conduction with change
of phase as pseudo single-phase problem. In the medium undergoing phase change

‘equivalent' heat capacity can be written as Cp, + L& T-Ty), where L is latent heat of fusion. In

the apparent heat capacity L&T-Tp) of the 'equivalent’ heat capacity is replaced by L/AT
around Trin a manner that correctly accounts for the heat of fusion contains. That is, melting

is spread over a nonzero temperature interval AT, instead of occurring discontinuously at a
unique temperature at a unique plane. It is incorporated into the transient heat conduction
equation in the method joining two different phase media in one medium.
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In the present work L/AT in the apparent heat capacity is substituted again by Gaussian

T L ' 2 . . o .
distribution, mexp[—{(T - Tf)/ ATf} ], to avoid the discontinuity of heat capacity

near AT. Thus, firstly, this new version of apparent heat capacity method is tested against the
analytical solutions of transient heat conduction problems with two simple boundary
conditions, constant surface temperature and constant surface heat flux. Secondly, apparent
mass capacity method is developed based on the apparent heat capacity technique and
compared to the analytical solution for parabolic metal oxidation case (i.e., the oxide layer
thickness is proportional to t!/2), Last it was tested for a three-phase scaling problem,

zirconium steam oxidation taken as an example, in which two layers grow parabolically in
time.

II. Formulation of Transient Heat and Mass Transfer Problems
with Change of Phase

II.1  Formulation of the Problem in Semi-infinite Medium
Transient Heat Transfer problems Domain Transient Mass Transfer problems
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I1.2

Apparent Capacity Formulation
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Transient Heat Transfer problems Domain Transient Mass Transfer problems
=~ ol _d( dI -9C 9(.DocC
pC——=—~(k——) <x<oo E—=—E——
"o ox\ ox 0= o ox D o
T(x,0)=T, C(x,0)=¢
Initial and
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III. Solutions for Transient Heat Conductions with Change of Phase

1.1  Constant Surface Temperature Condition

Analytical Solution: Neumann's Solution

0=1-(1- ) 0<n< A (liquid)
erfcA
erfcn .
erfcA n (solid)
T-T. T.-T. x X
where 0 = L A= , N= ,and A =—L—.
r-1, "1 -1 " 2ot
C(T -T.
A is determined by: -—@exp(lz) = - where Ste = ——”(—L—‘l
Ste erfcA L
Numerical Solution
Figure 2.a)
II1.2 Constant Surface Heat Flux Condition
Analytical Solution; Goodman's Solution
_ | 1 1 C,Tj x} B apL
0= §é—(——z+z,/1 +4n, + 77_,,) where Ste = IL .M, = —ﬁ—, and B —T.

, . .o, _ o
Goodman's position of the melt front is: 7= —6—(11,. +5+.4/1 +4711) where 7= BT




Numerical Solution

Figure 2.b)

IV. Solutions for Transient Diffusion Problems with Change of Phase

IV.1  Parabolic Scaling Problem in Two Phases
Neumann's Solution vs. Numerical Solution

Figure 3.a)
IV.2  Application to Zircaloy Corrosion: Parabolic Scaling Problem in Three Phases
Pawel's Solution vs. Numerical Solution

Figure 3.b)

V. Conclusions

The apparent capacity method offers a computational tool intermediate between analytical
solutions, which are useful only in restricted cases, and detailed numerical solutions, which
are generally complex, require development of numerical methods and are applicable only for
particular situations.

Comparison of the apparent capacity technique with available analytical solutions of
simple moving boundary problems shows the accuracy to be satisfactory. In fact, the
computation errors in the location of the phase change interface and the total energy or mass
absorbed turned out to be within a few percent over a wide range of parameters.

The application of the apparent capacity method can be extended to any geometry, multiple
media case, temperature-dependent material property problems, and non-linear boundary
conditions. The technique can use readily-available commercial partial differential equation
solvers.
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Figure 2 Comparison of numerical solution by apparent heat capacity method

with analytical solutions in a) constant surface temperature and

b) constant surface heat flux cases
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Figure 3 a) oxygen concentration profile during scaling of a metal b) oxygen
concentration profile in oxidized zircaloy (both analytical and numerical

solution by apparent mass capacity method fall on the solid curves)
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