• Title/Summary/Keyword: Nuclear phase

Search Result 1,386, Processing Time 0.03 seconds

Analysis of Phase Separation by Thermal Aging in Duplex Stainless Steels by Magnetic Methods

  • Kim, Sunki;Wonmok Jae;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.361-367
    • /
    • 1997
  • The phase separation in ferrite phase of duplex stainless steel is the primary cause of thermal aging embrittlement of the LWR primary pressure boundary components. In this study the phase separation of simulated duplex stainless steel was detected by Mossbauer spectroscopy and magnetic property analysis by VSM(Vibrating Specimen Magnetometer). The simulated duplex stainless steels, Fe-Cr binary, Fe-Cr-Ni ternary, and Fe-Cr-Ni-Si quarternary allots, were aged at 370 and 40$0^{\circ}C$ up to 5,340 hours. It was observed from Mossbauer spectra analysis that internal magnetic field increases with aging time and from VSM that the specific saturation magnetization and Curie temperature increase with aging time. These result are indicative that phase separation into Fe-rich region and Cr-rich region is caused by thermal aging in the temperature range of 370~40$0^{\circ}C$ In cases of specimens containing Ni, the increase of specific saturation magnetization is much higher. This implies that Ni seems to promote Fe-Cr interdiffusion, which accelerates the phase separation into Fe-rich $\alpha$ phase and Cr-rich $\alpha$' phase.

  • PDF

Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2047-2053
    • /
    • 2020
  • Single-tube burst tests on hydrogenated Zircaloy-4 nuclear fuel cladding under simulated loss-of-coolant accident are conducted to evaluate the impact of hydrogen on burst parameters. The heating rate and initial pressure are varied from 5 K/s to 150 K/s and 5 bar-80 bar, respectively. The hydrogen concentration in the cladding is in the range of 0-2000 wppm. Burst stress is lower for hydrogenated cladding in α-phase. A significant loss of ductility is observed in α-phase and lower α + β-phase for hydrogenated cladding. However, the burst strain is higher for hydrogenated cladding in β-phase. There is a sigmoidal dependency of rupture area with initial stress and rupture area is larger for hydrogenated cladding. A novel burst stress correlation for hydrogenated Zircaloy-4 cladding has been proposed.

THE CUPID CODE DEVELOPMENT AND ASSESSMENT STRATEGY

  • Jeong, J.J.;Yoon, H.Y.;Park, I.K.;Cho, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.636-655
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been being developed for the realistic analysis of transient two-phase flows in nuclear reactor components. The CUPID code development was motivated from very practical needs, including the analyses of a downcomer boiling, a two-phase flow mixing in a pool, and a two-phase flow in a direct vessel injection system. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations are solved over unstructured grids with a semi-implicit two-step method. This paper presents an overview of the CUPID code development and assessment strategy. It also presents the code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER.

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah;Ismail, Aznan Fazli;Muttalib, Nabilla Abdul;Hanifah, Muhammad Syafiq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2926-2936
    • /
    • 2021
  • Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo;Xin, Yong;Liu, Wenbo;Sun, Zhipeng;Chen, Ping;Sun, Dan;Zhou, Mingyang;Liu, Xiao;Yun, Di
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.226-233
    • /
    • 2022
  • In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.

Production of Cloned Embryos and Animals following Regulation of Cell Cycle of Donor Nucleus and Type of Recipient Cytoplasm (토끼에서 공핵란의 세포주기 조절과 수핵란의 세포질 상태에 따른 핵이식 수정란의 체외 발달과 복제동물의 생산)

  • 박충생;전병균;하란조;윤희준;곽대오;이효종;최상용
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.259-267
    • /
    • 1997
  • To improve the efficiency of production of cloned embryos and animals by nuclear transplantation in the rabbit, the effect of cell cycle of donor nuclei and type of recipient cytoplasm on the in vitro developmental potential and production efficiency of offspring was determined. The embryos of 16-cell stage were collected from the mated does at 48h post-hCG injection and they were synchronized to G$_1$ phase of 32-cell stage. The oocytes collected at 14h post-hCG injection were freed from cumulus cells and then enucleated. One group of the enucleated cytoplasms was activated by electrical stimulation prior to injection of donor nucleus, and the other group was not pre-activated. The separated G$_1$phase blastomeres of 32-cell stage embryos were injected into the perivitelline space of recipient cytoplasms. After culture for 20h post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation and the fused nuclear transplant embryos were co-cultured for 120h and the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye and their blastomeres were counted. Some of the nuclear transplant embryos developed in vitro to 2- to 4-cell stage were transferred into the oviducts of synchronized recipient does. The electrofusion rate was similar between the types of donor nuclei and recipient cytoplasms used. However, the nuclear transplant embryos using G$_1$ phase donor nuclei were developed to blastocyst at higher rate(60.3%) than those using S phase ones(24.7%). Also, when non-preactivated oocytes were used as recipient cytplasms, the develop-mental rates of nuclear transplant embryos to blastocysts were significantly(P< 0.05) higher(57.1%) than those using preactivated ones(20.8%). The cell counts of nuclear transplant embryos developed to blastosyst stage were increased signficantly(P<0.05) more in the non-preactivated recipient cytoplasm(163.7 cells), as compared whit the preactivated recipient cytoplasm(85.4 cells), A total of 49 nuclear transplant embryos were tranferrid into 5 recipient does, of which two offsprings were produced from a foster mother 31 days after embryo transfer. these results showed that the blastomeres of G1 phase and non-preactivated oocytes might be utillzed efficiently as donor nuclei and recipient cytoplasms in the nuclear transplant procedure, thought the offspring production remained still low.

  • PDF

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.