• Title/Summary/Keyword: Nuclear medicine image

Search Result 615, Processing Time 0.025 seconds

Quantitative Analysis of Artifactual Perfusion Defects due to the Cutoff Frequencies of Reconstruction Filters in Tc-99m-MIBI Myocardial SPECT Images (Tc-99m-MIBI 심근 SPECT에서 재구성필터의 차단주파수에 의한 인위적 관류결손의 정량적 평가)

  • Kwark, Cheol-Eun;Chung, June-Key;Lee, Myung-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.231-238
    • /
    • 1995
  • Tc-99m-MIBI (Sestamibi) myocardial SPECT along with TI-201 tomographic Imaging has demonstrated wide application and high image quality sufficient for the diagnosis of myocardial perfusion defect, which consequently reflects regional myocardial blood flow. The qualitative values of myocardial SPECT with Tc-99m-MIBI as well ds the quantitative cases depend in some degree on the reconstruction techniques of multiple projections. Filtered backprojection (FBP) Is the common standard method for reconstruction rather than the complicated and time-consuming arithmetic methods. In FBP it is known that the distribution of radioactivity in reconstructed transverse slices varies with the selected litter parameters such as cutoff frequencies and order (Butterworth case) The cutoff frequencies used in clinicAl practice partially remove and decrease the true radioactive distribution and alter the pixel counts, which lead to underestimation of true counts in specific myocardial regions. In this study, we have investigated the effect of cutoff frequencies of reconstruction filter on the artifactually induced perfusion defects, which are often demonstrated near inferior and/or inferoseptal cardiac walls due to the intense hepatic uptake of Tc-99m-MIBI. A computerized method for Identifying the relative degree of artifactual perfusion defect and for comparing those degrees along with the relative amount of hepatic uptake to myocardium was developed and patient images were studied to observe the quantitative degree of underestimation of myocardial perfusion, and to propose some reasonable threshold of cutoff frequency in the diagnosis of perfusion defect quantitatively. We concluded that from the quantitative viewpoint cutoff frequencies may be used as high as possible with the sacrifice of homogeneity of image quality, and those frequencies lower than the common 0.3 Wyquist frequency would reveal severe degradation of radioactive distribution near inferior and/or inferoseptal myocardium when applying Butterworth or low pass filter.

  • PDF

Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging (다중 분자 영상을 위한 간편한 동물 특이적 자세 고정틀의 제작)

  • Park, Jeong-Chan;Oh, Ji-Eun;Woo, Seung-Tae;Kwak, Won-Jung;Lee, Jeong-Eun;Kim, Kyeong-Min;An, Gwang-Il;Choi, Tae-Hyun;Cheon, Gi-Jeong;Chang, Young-Min;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae;Yoo, Jeong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.401-409
    • /
    • 2008
  • Purpose: Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. Materials and Methods: The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at $60^{\circ}C$ in oven overnight for hardening. Four sealed pipet tips containing $[^{18}F]FDG$ solution were used as fiduciary markers. After injection of $[^{18}F]FDG$ via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Results: Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Conclusion: Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment.

CT and MRI Image Fusion Reproducibility and Dose Assessment on Treatment Planning System (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Choi, Jae-Hyock;Park, Cheol-Soo;Seo, Jeong-Min;Cho, Jae-Hwan;Choi, Cheon-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.191-196
    • /
    • 2014
  • The purpose of this study is to evaluate the reproducibility and usefulness of an image through the fusion of the computed tomography image and the magnetic resonance image by using a self-produced phantom when planning the treatment, and also to compare and analyze the target dose on the acquired image. The size of small hole and the reproducibility of capacity existed in the phantom on the image of the phantom obtained by the computed tomography and the magnetic resonance image of the phantom scanning with different intensity of magnetic field are compared, and the change of dose in the random target is compared and analyzed.

Evaluation of Automatic Image Segmentation for 3D Volume Measurement of Liver and Spleen Based on 3D Region-growing Algorithm using Animal Phantom (간과 비장의 체적을 구하기 위한 3차원 영역 확장 기반 자동 영상 분할 알고리즘의 동물팬텀을 이용한 성능검증)

  • Kim, Jin-Sung;Cho, June-Sik;Shin, Kyung-Sook;Kim, Jin-Hwan;Jeon, Ho-Sang;Cho, Gyu-Seong
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Living donor liver transplantation is increasingly performed as an alternative to cadaveric transplantation. Preoperative screening of the donor candidates is very important. The quality, size, and vascular and biliary anatomy of the liver are best assessed with magnetic resonance (MR) imaging or computed tomography (CT). In particular, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Preoperative liver segmentation has proved useful for measuring the graft volume before living donor liver transplantations in previous studies. In these studies, the liver segments were manually delineated on each image section. The delineated areas were multiplied by the section thickness to obtain volumes and summed to obtain the total volume of the liver segments. This process is tedious and time consuming. To compensate for this problem, automatic segmentation techniques have been proposed with multiplanar CT images. These methods involve the use of sequences of thresholding, morphologic operations (ie, mathematic operations, such as image dilation, erosion, opening, and closing, that are based on shape), and 3D region growing methods. These techniques are complex but require a few computation times. We made a phantom for volume measurement with pig and evaluated actual volume of spleen and liver of phantom. The results represent that our semiautomatic volume measurement algorithm shows a good accuracy and repeatability with actual volume of phantom and possibility for clinical use to assist physician as a measuring tool.

  • PDF

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

A study on image registration and fusion of MRI and SPECT/PET (뇌의 단일 광자 방출 전산화 단층촬영 영상, 양전자 방출 단층 촬영 영상 그리고 핵자기공명 영상의 융합과 등록에 관한 연구)

  • Joo, Ra-Hyung;Choi, Yong;Kwon, Soo-Il;Heo, Soo-Jin
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • Nuclear Medicine Images have comparatively poor spatial resolution, making it difficult to relate the functional information which they contain to precise anatomical structures. Anatomical structures useful in the interpretation of SPECT /PET Images were radiolabelled. PET/SPECT Images Provide functional information, whereas MRI mainly demonstrate morphology and anatomical. Fusion or Image Registration improves the information obtained by correlating images from various modalities. Brain Scan were studied on one or more occations using MRI and SPECT. The data were aligned using a point pair methods and surface matching. SPECT and MR Images was tested using a three dimensional water fillable Hoffman Brain Phantom with small marker and PET and MR Image was tested using a patient data. Registration of SPECT and MR Images is feasible and allows more accurate anatomic assessment of sites of abnormal uptake in radiolabeled studies. Point based registration was accurate and easily implemented three dimensional registration of multimodality data set for fusion of clinical anatomic and functional imaging modalities. Accuracy of a surface matching algorithm and homologous feature pair matching for three dimensional image registration of Single Photon Emission Computed Tomography Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) and Magnetic Resonance Images(MRD was tested using a three dimensional water fill able brain phantom and Patients data. Transformation parameter for translation and scaling were determined by homologous feature point pair to match each SPECT and PET scan with MR images.

  • PDF

Region of Interest Localization for Bone Age Estimation Using Whole-Body Bone Scintigraphy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Kang, Sae Ryung;Min, Jung Joon
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 2021
  • In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.

Observation of Liver Color Scan (Liver Color Scan에 대(對)한 고찰(考察))

  • Choe, Y.K.;Ahn, S.B.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.3 no.2
    • /
    • pp.55-63
    • /
    • 1969
  • In the past few years, scintigraphy has become increasingly important in clinical practice, and the use of a color-printing technique has permited a more accurate interpretation of the scan image. Our liver color scintigrams consist of 51 hepatomas, 35 liver cirrhosis, 22 liver abscessis, 10 hepatitis and other 13 cases of the liver diseases which were clinically arid pathologically diagnosed at Sevarance Hospital, Yonsei Univ., since Feb. 1969 through Sept. 1969. These scintigrams have been analized in terms of various pathologic morphology, such as size, shape, margin of the liver, distribution of radioactivity, and shape of the space occupying lesions. The results are as follows: 1. Enlargement of the liver was the most common finding in the diseased livers. The Rt. lobe enlargement was particularly prominent in the liver abscess. 2. Irregular distribution of radioactivity in the liver (so called mottling) was present in 78% of hepatoma, while it was seen only in 31% of liver abscesses. 3. Liver cirrhosis tends to show perihilar accumulation of the isotope (57%). 4. The deformity of the lower most angle of the Rt. lobe, and the Lt. lateral margin of the Lt. lobe was also impressive throughout the cases ($74{\sim}95%$ of all diseased livers). 5. The frequency of visualization of the spleen was influenced by the size of space occupying lesions and the amount of functioning liver. 6. Differentiation between the liver abscess and hepatoma seems to be possible on scintigram, when shape and margin of defect and patterns of distribution of radioactivity in the remaining liver are clearly demonstrated.

  • PDF

Assessment of Attenuation Correction Techniques with a $^{137}Cs$ Point Source ($^{137}Cs$ 점선원을 이용한 감쇠 보정기법들의 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyoung;Park, Yun-Young;Park, Hae-Joung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Purpose: The objective of this study was to assess attenuation correction algorithms with the $^{137}Cs$ point source for the brain positron omission tomography (PET) imaging process. Materials & Methods: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a $^{137}Cs$ point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. Results: ELEC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. Conclusion: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.

A Study on the Variable Factors for Brain Perfusion SPECT(Diamox) Scan (Brain Perfusion SPECT(Diamox) 검사의 수행결과에 영향을 주는 요인)

  • Lee, Jin-Hyeong;Kim, Sang-Eon;Park, Hyeon-Soo;Park, Yeoung-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.99-103
    • /
    • 2011
  • Purpose: Head movement during brain perfusion SPECT (Diamox) scan is a one of important issues which decreases image quality. It also causes repeated scans. This study was designed to evaluate variable factors causing scan failures. Materials and Methods: 676 patients (359 men, 317 women, age average $54.5{\pm}18.4$) for brain perfusion SPECT (Diamox) scan from March, 2010 to Feb. 2011 were used as a subject. Age data and the kind of disease(Moyamoya disease (MMD), None moyamoya disease (NMMD), Cerebral infarction (CI)), test performance outcome (success,failure) were collected. The head movement factors(gender, disease, age, head fixation device) were evaluated by chi-square test and logistic regression analysis Results: The result showed that men had higher scan failure rate than women. Seniors in seventies(men 3.4%, women 1.5%) showed the most highest failure rate. Using head fixation device increased scan success rate up to 94.4~97.7%. The scan success rate is dependent upon gender, head fixation device by chi-square test(${\chi}^2$=3.8 (df=1, p<0.05), ${\chi}^2$=10.4 (df=1, p<0.001)) Gender, disease(CI), head fixation device showed very effective result in logistic regression analysis.(Wald=3.3 (p<0.07), Wald=3.7 (p<0.05), Wald=9.3 (p<0.05) Conclusion: It is demonstrated that gender, disease, using head fixation device is statistically very useful factors. Especially, head fixation device is a main key minimizing repeated scan.

  • PDF