• 제목/요약/키워드: Nuclear hydrogen

검색결과 632건 처리시간 0.026초

Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle

  • Juarez-Martinez, L.C.;Espinosa-Paredes, G.;Vazquez-Rodriguez, A.;Romero-Paredes, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.2066-2073
    • /
    • 2021
  • The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur-Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.

원자력의 고온 핵열을 이용한 열화학적 수소제조 프로세스에의 분리막 기술의 응용 (Application of the Membrane Technology in Thermochemical Hydrogen Production Process using High Temperature Nuclear Heat)

  • 황갑진;박주식;이상호;최호상
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 추계 총회 및 학술발표회
    • /
    • pp.25-33
    • /
    • 2003
  • 원자력 발전의 고온 가스로(high temperature gas-cooled reactor, HTGR)의 냉각제로 사용되는 He가스의 폐열에너지를 이용하여 물을 분해해서 수소를 생산하는 “열화학적 수소제조 IS프로세스”에서의 분리막 기술의 응용에 대해 정리하였다. 고온 원자력 열에너지를 이용한 열화학적 수소 제조법은 실현 가능한 단계까지 왔다고 생각되며, 아직 연구 개발 과제가 많이 남아 있지만, 미래의 청정에너지 중의 하나인 수소를 대량 생산할 수 있는 가능성을 갖고 있다.

  • PDF

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • Song, Chang Hyun;Bae, Joon Young;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2960-2973
    • /
    • 2022
  • Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.

실시간 삼중수소 검출을 위한 단위 양성자 교환 막 전기분해 기초연구 (Fundamental Study of Unit Proton Exchange Membrane Electrolysis for Realtime Detection of Tritium)

  • 채종민;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.226-234
    • /
    • 2018
  • Even though the nuclear power plants has many advantages, safety issues of nuclear power plants are crucial factors of reliable operation. A tritium detector is a useful sensor to analyze amount of exposed radiation from the nuclear power plants. Currently, concentration of underwater tritium is measured precisely but it takes very long time. Since electrolysis is extracted hydrogen from the coolant of nuclear power plant, it can motivate to develop new type of real-time sensor. In this study, Proton Exchange Membrane (PEM) electrolyzer is studied for candidate as preprocessor of real-time tritium detector. Characteristics of the unit PEM electrolyzer were experimentally investigated. A simulation model is developed to understand physical behavior of unit PEM electrolyzer under dynamic operation.

Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition

  • Lee, Hoon;Kim, Kyung-min;Kim, Ju-Seong;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.352-359
    • /
    • 2020
  • The effects of hydrogen precipitation on the mechanical properties of Zircaloy-4 and Zirlo alloys were examined with uniaxial tensile tests at room temperature and at 400 ℃ and accompanying microstructural changes in the Zircaloy-4 and Zirlo alloy specimens were discussed. The elastic moduli of Zircaloy-4 and Zirlo alloys decreased with increasing hydrogen concentrations. Yield strengths of both materials tended to decrease gradually. The reductions of yield stress seems to be caused by the dissipation of yield point phenomena shown in stress-strain curves. Ultimate tensile strengths (UTS) of Zircaloy-4 and Zirlo slightly increased at low hydrogen contents, and then decreased when the concentrations exceeded 500 and 700 wppm, respectively. Uniform elongations were stable until 600 wppm and drops to 0% around 1400 wppm at room temperature.

RESEARCH EFFORTS FOR THE RESOLUTION OF HYDROGEN RISK

  • HONG, SEONG-WAN;KIM, JONGTAE;KANG, HYUNG-SEOK;NA, YOUNG-SU;SONG, JINHO
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.33-46
    • /
    • 2015
  • During the past 10 years, the Korea Atomic Energy Research Institute (KAERI) has performed a study to control hydrogen gas in the containment of the nuclear power plants. Before the Fukushima accident, analytical activities for gas distribution analysis in experiments and plants were primarily conducted using a multidimensional code: the GASFLOW. After the Fukushima accident, the COM3D code, which can simulate a multidimensional hydrogen explosion, was introduced in 2013 to complete the multidimensional hydrogen analysis system. The code validation efforts of the multidimensional codes of the GASFLOW and the COM3D have continued to increase confidence in the use of codes using several international experimental data. The OpenFOAM has been preliminarily evaluated for APR1400 containment, based on experience from coded validation and the analysis of hydrogen distribution and explosion using the multidimensional codes, the GASFLOW and the COM3D. Hydrogen safety in nuclear power has become a much more important issue after the Fukushima event in which hydrogen explosions occurred. The KAERI is preparing a large-scale test that can be used to validate the performance of domestic passive autocatalytic recombiners (PARs) and can provide data for the validation of the severe accident code being developed in Korea.