• Title/Summary/Keyword: Nuclear fusion energy

Search Result 166, Processing Time 0.021 seconds

A Mechanistic Critical Heat Flux Model for High-Subcooling, High-Mass-Flux, and Small-Tube-Diameter Conditions

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • A mechanistic model based on wall-attached bubble coalescence, previously developed by the authors, was extended to predict a vow high critical heat flux (CHF)in highly subcooled flow boiling, especially for high mass flux and small tube diameter conditions. In order to take into account the enhanced condensation due to high subcooling and high mass velocity in small diameter tubes, a mechanistic approach was adopted to evaluate the non-equilibrium flow quality and void fraction in the subcooled water flow boiling, with preserving the structure of the previous CHF model. Comparison of the model predictions against highly subcooled water CHF data showed relatively good agreement over a wide range of parameters. The significance of the proposed CHF model lies in its generality in applying over the entire subcooled flow boiling regime including the operating conditions of fission and fusion reactors.

  • PDF

Measurement of Mmechanical Properties in Weld Zone of Nuclear Material using an Instrumented Indentation Technique (계장형 압입시험법에 의한 원자력 구조재료 용접 물성치 측정)

  • Song, Kee-Nam;Ro, Dong-Seong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • Different microstructures in the weld zone of a metal structure including a fusion zone and heat affected zone are formed as compared to the base material. Thus, the mechanical properties in the weld zone are different from those in the base material. As the basic data for reliably understanding the structural characteristics of welded nuclear material, the mechanical properties in the weld zone and base material for a Zircaloy-4 strap and Hastelloy${(R)}$-X alloy strap are measured using an instrumented indentation technique (IIT) in this study.

Shielding analyses supporting the Lithium loop design and safety assessments in IFMIF-DONES

  • Gediminas Stankunas ;Yuefeng Qiu ;Francesco Saverio Nitti ;Juan Carlos Marugan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1210-1217
    • /
    • 2023
  • The assessment of radiation fields in the lithium loop pipes and dump tank during the operation were performed for International Fusion Materials Irradiation Facility - DEMO-Oriented NEutron Source (IFMIF-DONES) in order to obtain the radiation dose-rate maps in the component surroundings. Variance reduction techniques such as weight window mesh (produced with the ADVANTG code) were applied to bring the statistical uncertainty down to a reasonable level. The biological dose was given in the study, and potential shielding optimization is suggested and more thoroughly evaluated. The MCNP Monte Carlo was used to simulate a gamma particle transport for radiation shielding purposes for the current Li Systems' design. In addition, the shielding efficiency was identified for the Impurity Control System components and the dump tank. The analysis reported in this paper takes into account the radiation decay source from and activated corrosion products (ACPs), which is created by d-Li interaction. As a consequence, the radiation (resulting from ACPs and Be-7) shielding calculations have been carried out for safety considerations.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Investigation for construction of the control system for KSTAR NBI (KSTAR NBI 운전 제어 시스템 제작을 위한 고찰)

  • Chang, D.S.;Oh, B.H.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.295-296
    • /
    • 2006
  • Prototype NBI(Neurtal Beam Injector), which Is tested at KAERI(Kaeri Atomic Energy Research Instutide), is the facility for tokamak plasma Ignition of the advanced nuclear fusion KSTAR(Korea Superconducting Tokamak Advanced Research). New NBI facility, which is the part of KSTAR tokamak, will be constructed during next three years. This investigation is focused on the preliminary test to construct the control system for KSTAR NBI, before KSTAR NBI facility is constructed.

  • PDF

The Usefulness Assessment of Attenuation Correction and Location Information in SPECT/CT (SPECT/CT에서 감쇠 보정 및 위치 정보의 유용성 평가)

  • Choi, Jong-Sook;Jung, Woo-Young;Shin, Sang-Ki;Cho, Shee-Man
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.214-221
    • /
    • 2008
  • Purpose: We make a qualitative analysis of whether Fusion SPECT/CT can find lesion's anatomical sites better than existing SPECT or not, and we want to show the usefulness of SPECT/CT through finding out effects of CT attenuation correction on SPECT images. Materials and Method: 1. The evaluation of fusion images: This study comprised patients who was tested $^{131}I$-MIBG, Bone, $^{111}In$-Octreotide, Meckel's diverticulum, Parathyroid MIBI with Precedence 16 or Symbia T2 from 2008 Jan to Aug. We compared SPECT/CT image with non fusion image and make a qualitative analysis. 2. The evaluation of attenuation correction: We classified 38 patients who was tested 201Tl myocardial exam with Symbia T2 into 5 sections by using Cedars Sinai' QPS program - Ant, Inf, Lat, Septum, Apex. And we showed each section's perfusion states by percentage. We compared the each section's perfusion-states differences between CT AC and Non AC by average${\pm}$standard deviation. Results: 1. The evaluation of fusion images : In high energy $^{131}I$ cases, it was hard to grasp exact anatomical lesions due to difference between regions and surrounding lesions' uptake level. After combining with CT, we could grabs anatomical lesion more exactly. And in meckel's diverticulum case or to find lesions around bowels or organs with $^{111}In$ cases, it demonstrates its superiority. Bone SPECT/CT images help to distinguish between disk spaces certainly and give correct results. 2. The evaluation of attenuation correction: There is no significant difference statistically in Ant and Lat (p>0.05), but there is a meaningful difference in Inferior, Apex and Septum (p<0.05). AC perfusion at inferior wall in the 5 sections of myocardium: The perfusion difference between Non AC perfusion image ($68.58{\pm}7.55$) and CT corrected perfusion image ($76.84{\pm}6.52$) was the largest by $8.26{\pm}4.95$ (p<0.01, t=10.29). Conclusion: Nuclear medicine physicians can identify not only molecular image which shows functional activity of lesions but also anatomical location information of lesions with more accuracy using the combination of SPECT and CT systems. Of course this combination helps nuclear medicine physician find out the abnormal parts. Moreover combined data sets help separate between normal group and abnormal group in complicated body part. So clinicians can carry out diagnosis and treatment planning at the same time with a single test image. In addition, when we examine a myocardium in thorax where attenuation can occur easily, we can trust perfusion more in a certain region in SPECT test because CT provides the capability for accurate attenuation correction. In these reasons, we think we can prove the justice after treatment fusion image.

  • PDF

Hydrogen Pumping Characteristics of a Scroll Pump (스크롤 펌프의 수소 배기특성)

  • In S. R.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.14-23
    • /
    • 2006
  • The scroll pump is widely used in ultra clean vacuum systems. However, there is no commonly available information on the hydrogen pumping characteristics of this pump, which creates a difficulty in determining whether the scroll pump can be used or not in a fusion experiment system where hydrogen ,is the main working gas. In this paper the experimental setup, measurement procedures, experimental results, and discussions on the pumping speed, the maximum compression ratio and the back-streaming properties of the scroll pump, especially for the hydrogen gas, are reported.

Design and Test Results of 6-kA HTS-Copper Current Leads with HTS Section Operating in the Current-Sharing Mode

  • Lee, Haigun;Kim, Ho-Min;Yukikazu Iwasa;Kim, Keeman;Paul Arakawa;Greg Laughon
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.100-108
    • /
    • 2003
  • This paper presents the design and performance results of a pair of 6-kA high-temperature superconducting (HTS)-copper current leads, in which, over a short length at the warm end (e.g.,77K) of each HTS section, comprised of paralleled Bi-2223/Ag-Au tapes, is operated in the current-sharing mode. Because of their reliance on vapor cooling, the leads are applicable only to liquid helium cooled superconducting magnets such as those used in high-energy Physics accelerators and fusion machines. The experimental measurements have demonstrated that key performance data of the new 6-kA HTS-Copper leads agree reasonably well with those expected from design.

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea (국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kim, Gungyu;Choi, In-Kil;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.