• Title/Summary/Keyword: Nuclear fuel powder

Search Result 100, Processing Time 0.021 seconds

Determination of Forward Dissolution Rate of Glass by a Single-Pass Flow-Through Test (Single-Pass Flow-Through Test방법에 의한 유리의 정용해율 측정)

  • Kim Seung-Soo;Chun Kwan-Sik;Choi Jong-Won;Kim Sung-Ki;Hahn Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.335-340
    • /
    • 2005
  • The forward dissolution rate of a borosilicate waste glass was determined as an interlaboratory study(ILS) testing program for the evaluation of precision in the measurement of the dissolution rate or a waste glass using a single-pass flow-through(SPFT) test, whose conducting practice has been written for standardization through American Society for Testing and Materials (ASTM). A simulated low-activity waste glass powder with a size of 100/200 mesh was dissolved by lithium buffer solution (pH=10) at 70? under Ar atmosphere. By plotting the dissolution rates as a function of silicon and boron concentration in eluate, the forward dissolution rate of the glass was obtained as about $2.7\times10^{-5}g{\cdot}m{\cdot}s^{-1}$ in our laboratory.

  • PDF

Manufacture of the vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets using a design model (설계 모델을 이용한 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 제작)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Hong Dong-Hee;Uhm Jae-Beop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • Vol-oxidizer is a device to convert $UO_2$ pellets into $U_3O_8$ powder and to feed a homogeneous powder into a Metal Conversion Reactor in the ACP(Advanced Spent Fuel Conditioning Process). In this paper, we propose a design model of the vol-oxidizer, develop the new vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets, and conduct a verification for the device. Design considerations include the internal structure, the capacity, the heating position of the device, and the size. The dimensions of the new vol-oxidizer are decided by the design model. We determine a permeability test of the $U_3O_8$ measuring the temperature distribution, and the volume of $UO_2$ and $U_3O_8$. We manufactured the new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets, and then analyzed the characteristics of the $U_3O_8$ powder for the verification. The experimental results show that the permeability of the $U_3O_8$ throughout mesh enhance more than old vol-oxidizer, the oxidation time takes only 8 hours when compared with the 13 hours of the old device, and the average distribution of particle size is $40{\mu}m$. The capacities of new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets were agree well with the predictions of design model.

  • PDF

Influence of Mixtures and Curing Conditions on Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials (배합 및 양생조건이 3성분계 포졸란재를 이용한 RPC의 강도발현 특성에 미치는 영향)

  • Janchivdorj, Khulgadai;Choi, Seung-Hoon;So, Hyoung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • This study discussed the influence of mixtures and curing conditions on the development of strength and microstructure of RPC using ternary pozzolanic materials. Through pilot experiment, various RPC was manufactured by adding single or mixed ternary pozzolanic materials such as silica fume, blast furnace slag and fly ash by mass of cement, up to 0~65%, and cured by using 4 types of method which are water and air-dried curing at $20^{\circ}C$, steam and hot-water curing at $90^{\circ}C$. The results show that the use of ternary pozzolanic materials and a suitable curing method are an effective method for improving development of strength and microstructure of RPC. The unit volume of cement was greatly reduced in RPC with ternary pozzolanic materials and unlike hydration reaction in cement, the pozzolanic reaction noticeably contributes to a reduction in hydration heat and dry shrinkage. A considerable improvement was found in the flexural strength of RPC using ternary pozzolanic materials, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser by using the ternary pozzolanic materials than the original RPC containing silica fume only.

Improvement of Removal Characteristics of Uranium by the Immobilization of Diphosil Powder onto Alginate Bed (다이포실 분말수지의 비드화에 의한 우라늄 제거특성 개선)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Chemical wastes containing small amounts of uranium can not be disposed of them after treatment as an industrial waste, because the uranium concentration in the final dry cake exceeds the exemption level. Especially for the removal of uranium in this study, the method for immobilizing Diphosil powder within alginate beads is adopted to make a bead form from a powdered resin. Sodium alginate bead itself showed a capability to uptake uranium to above 60%, but the value was decreased to below 30% after equilibrium. The adsorption rate of uranium increased with the increasing content of Diphosil in the sodium alginate bead. Diphosil resin itself showed very fast uptake of uranium from early stages, and then the rates were leveled off. Diphosil bead showed an improved capability to uptake uranium considering the pure Diphosil content in the composite bead, and provide a considerable potential for further applications of a continuous process by using Diphosil as a bead form.

  • PDF

Solidification of Molten Salt Waste by Gel-Route Pre-treatment (겔화 전처리법을 이용한 폐용융염의 고형화)

  • Park Hwan Seo;Kim In Tae;Kim Hwan Young;Ryu Seung Kon;Kim Joon Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • This study suggested a new method for the solidification of molten salt waste generated from the electro-metallurgical process in the spent fuel treatment. Using binary material system, sodium silicate and phosphoric acid, metal chlorides were converted into metal phosphate in the micro-reaction module formed by SiO$_{2} particles. The volatile element in the reaction module would little vaporized below 1100$^{circ}$C After the gel product was mixed with borosilicate glass powder and thermally treated at 1000$^{circ}$C, li exists as Li$_{3}$PO$_4$ separated from glass phase and, Cs and Sr would be incorporated into an amorphous phase from XRD analysis. In case of the addition of ZrCl$_{4}$ to the binary system, the gel products were transformed into NZP structure considered as an prospective ceramic waste form after heat-treatment above 700 $^{circ}$C. From these results, the gel-route pretreatment can be considered as an effective approach to the solidincation of molten salt waste by the confirmed process or waste form and this also would be an alternative method on the ANL method using zeolites in USA by the confirmation of its chemical durability as an future work.

  • PDF

Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste (해체 콘크리트 폐기물 최종처분을 위한 시멘트 고화체 특성 평가)

  • Lee, Yoon Ji;Hwang, Doo Seong;Lee, Ki Won;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2013
  • Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. And concrete waste was generated about 800 drums of 200 L. The conditioning of concrete waste is needed for final disposal. The concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled void space after concrete rubble pre-placement into 200 L drum. Thus, this research has developed an optimizing mixing ratio of concrete waste, water, and cement and has evaluated characteristics of a cement waste form to meet the requirements specified in disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10wt% as the optimized mixing ratio. Also, the compressive strength of cement waste form was satisfied that including fine powder up to maximum 40wt% in concrete debris wastes about 75%. As a result of scale-up test, the mixture of concrete waste, water, and cement is 75:10:15wt% meet the satisfied compressive strength because the free water increased with and increased in particle size.

Removal of Uranium by an Alkalization and an Acidification from the Thermal Decomposed Solid Waste of Uranium-bearing Sludge (알카리화 및 산성화에 의한 우라늄 함유 슬러지의 열분해 고체 폐기물로부터 우라늄 제거)

  • Lee, Eil-Hee;Yang, Han-Beom;Lee, Keun-Young;Kim, Kwang-Wook;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • This study has been carried out to elucidate the characteristics of the dissolution for Thermal Decomposed Solid Waste of uranium-bearing sludge (TDSW), the removal of impurities by an alkalization in a nitric acid dissolving solution of TDSW, and the selective removal (/recovery) of uranium by an acidification in an carbonate alkali solution, respectively. TDSW generated by thermal decomposition of U-bearing sludge which was produced in the uranium conversion plant operation, was stored in KAERI as a solid-powder type. It is found that the dissolution of TDSW is more effective in nitric acid dissolution than oxidative-dissolution with carbonate. At 1 M nitric acid solution, TDSW was undissolved about 30wt% as a solid residue, and uranium contained in TDSW was dissolved more than 99%. In order to the alkalization for the nitric acid dissolving solution of TDSW, carbonate alkalization is more effective with respect to remove the impurities. At the carbonate alkali solution controlled to about 9 of pH, Al, Ca, Fe and Zn co-dissolved with U in dissolution step was removed about $98{\pm}1%$. On the other hand, U could be recovered more than 99% by an acidification at pH about 3 in a carbonate alkali solution, which was nearly removed the impurities, adding 0.5M $H_2O_2$. It was found that uranium could be selectively recovered (/removed) from TDSW.

The Measurement of Radionuclides Concentration Ratio of the Aquatic Animal using the Chinese Minnow(Rhynchocypris Oxycephalus) (버들치를 이용한 수중 동물의 방사성동위원소 전이계수 측정)

  • Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho;Keum, Dong-Kwon;Park, Doo-Won;Han, Mun-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • An experiment measuring the concentration ratios of $^{137}Cs$ and $^{85}Sr$ in fish as an index aquatic animal was performed. The species was Chinese minnow (Rhynchocypris Oxycephalus), a Korean native freshwater species. Chinese minnows were reared in acryl aquarium which was 45 cm wide, 85 cm long and 50 cm high. Water in the aquarium was successively purified using filtering devices attached on the floor and the wall. Fish powder in a particulate form was supplied twice a day for feeding. After a radioactive solution was added to make the initial water concentrations approximately $0.02\;{\mu}Ci/l$ and $0.1\;{\mu}Ci/l$ for $^{137}Cs$ and $^{85}Sr$, respectively, the fish and water were sampled 10 times for a month. The concentration ratios were measured to be $0.348lkg^{-1}\sim13.906lkg^{-1}$ for $^{137}Cs$ and $0.474lkg^{-1}\sim13.089lkg^{-1}$ for $^{85}Sr$.

Measurement of Terminal Velocity for Scatter Prevention of Powder in the Voloxidizer for Oxidation of UO$_{2}$ Pellet (UO$_{2}$ 펠릿 산화로의 분말 비산 방지를 위한 최종속도 측정)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Jin Jae-Hyun;Hong Dong-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • A voloxidizer for a hot cell demonstration, that handles spent fuels of a high radiation level in a limited space should be small and spent fuel powders should not be dispersed out of the equipment involved. In this study a density rate equation as well as the Stokes'equation has been proposed in order to obtain the theoretical terminal velocity of powders. The terminal velocity of U$_{3}$O$_{8}$ has been predicted by using the terminal velocity of SiO$_{2}$, and then determination has been the optimum air flow rate which is able to prevent powders from scattering. An equation which has shown a relationship between theoretical terminal velocities of U$_{3}$O$_{8}$ and SiO$_{2}$ has been derived with the help of the Stokes'equation, and then an experimental verification made for the theoretical Stokes' equation of SiO$_{2}$ by means of an experimental device made of acryl. The theoretical terminal velocity based on the proposed density rate equation has been verified by detecting U$_{3}$O$_{8}$ powders in a filter installed in the mock-up voloxidizer. As the results, the optimum air flow rates seem to be 20 LPM by the Stokes'equation while they are 14.5 L/min by the density rate equation. At the experiments with the mock-up voloxidizer, a trace amount of U$_{3}$O$_{8}$ seems to be detectable at the air flow rate of 14.5 L/min by the density rate equation, but U$_{3}$O$_{8}$ powders of 7$\mu$m diameter seem detectable at the air flow rate of 20 L/min by the Stokes'equation. It is revealed that 14.5 L/min is the optimum air flowe rate which is capable of preventing U$_{3}$O$_{8}$ powders from scattering in the UO$_{2}$ voloxidizer and the proposed density rate equation is proper to calculate the terminal velocity of U$_{3}$O$_{8}$ powders.

  • PDF

Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite (KURT 화강암 내 우라늄의 지화학적 용출특성에 미치는 용존이온의 영향)

  • Cho, Wan Hyoung;Baik, Min Hoon;Ryu, Ji-Hun;Lee, Jae Kwang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2018
  • In order to understand the long-term behavior of radionuclides in granite environments, geochemical behavior characteristics of uranium in granitic host rock of KURT (KAERI Underground Research Tunnel) were investigated by dissolution experiment with different reaction time and solutions. In the dissolution experiment, significantly increased dissolution levels of uranium from granite powder samples were identified during the reaction time of 0~10 days for reaction solutions ($UD-CO_3$ and UD-Bg) containing a large amount of $CO_3{^{2-}}$. On the other hand, significantly increased dissolution levels of uranium were also identified for reaction solutions containing Na and Ca after 60 days. Dissolution of uranium continuously increased in reaction solutions of $UD-CO_3$ ($44.61{\mu}g{\cdot}L^{-1}$), UD-Bg ($41.01{\mu}g{\cdot}L^{-1}$), UD-Na ($26.87{\mu}g{\cdot}L^{-1}$), UD-Ca ($20.26{\mu}g{\cdot}L^{-1}$), UD-CaSi ($17.03{\mu}g{\cdot}L^{-1}$), and UD-Si ($10.47{\mu}g{\cdot}L^{-1}$) in the experimental period of ~270 days. However, after day 270, dissolution of uranium showed a decreasing tendency. This is thought to have occurred because existing uranium in granite samples reached the limit of dissolution by interaction with reaction solutions. Concentrations of dissolved uranium and points of maximum concentration value were found to differ depending on the $CO_3{^{2-}}$ presence in the mixed reaction solution and on the geochemical type of the water. It is estimated that differences in the reaction rate between the granite sample and the reaction solution are due to the influence of dissolved ions in the reaction solution.