• 제목/요약/키워드: Nuclear fuel ($UO_2$)

검색결과 213건 처리시간 0.029초

Thermodynamic and experimental analyses of the oxidation behavior of UO2 pellets in damaged fuel rods of pressurized water reactors

  • Jung, Tae-Sik;Na, Yeon-Soo;Joo, Min-Jae;Lim, Kwang-Young;Kim, Yoon-Ho;Lee, Seung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2880-2886
    • /
    • 2020
  • A small leak occurring on the surface of a fuel rod due to damage exposes UO2 to a steam atmosphere. During this time, fission gas trapped inside the fuel rod leaks out, and the gas leakage can be increased due to UO2 oxidation. Numerous studies have focused on the steam oxidation and its thermodynamic calculation in UO2. However, the thermodynamic calculation of the UO2 oxidation in a pressurized water reactor (PWR) environment has not been studied extensively. Moreover, the kinetics of the oxidation of UO2 pellet also has not been investigated. Therefore, in this study, the thermodynamics of UO2 oxidation under steam injection due to a damaged fuel rod in a PWR environment is studied. In addition, the diminishing radius of the UO2 pellet with time in the PWR environment was calculated through an experiment simulating the initial time of steam injection at the puncture.

Development status of microcell UO2 pellet for accident-tolerant fuel

  • Kim, Dong-Joo;Kim, Keon Sik;Kim, Dong Seok;Oh, Jang Soo;Kim, Jong Hun;Yang, Jae Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.253-258
    • /
    • 2018
  • A microcell $UO_2$ pellet, as an accident-tolerant fuel pellet, is being developed to enhance the accident tolerance of nuclear fuels under accident conditions as well as the fuel performance under normal operation conditions. Improved capture-ability for highly radioactive and corrosive fission product (Cs and I) is the distinct feature of a ceramic microcell $UO_2$ pellet, and the enhanced pellet thermal conductivity is that of a metallic microcell $UO_2$ pellet. The fuel temperature can be effectively decreased by enhanced thermal conductivity. In this study, the material concepts of metallic and ceramic microcell $UO_2$ pellets were designed, and the fabrication process of microcell $UO_2$ pellets embodying the designed concept was developed. We successfully implemented the microcell $UO_2$ pellets and produced microcell $UO_2$ pellets. In addition, an assessment of the out-of-pile properties of a microcell $UO_2$ pellet was performed, and the in-reactor performance and behavior of the developed microcell pellets were evaluated through a Halden irradiation test. According to the expectations, the excellent performance of the microcell $UO_2$ pellets was confirmed by the online measurement data of the Halden irradiation test.

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.

The Conceptual Design of a Hybrid $UO_2$-MOX Pellet

  • Shin, Ho-Cheol;Bae, Sung-Man;Kim, Yong-Bae;Lee, Sang-Hee
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.45-50
    • /
    • 1997
  • The conventional MOX fuel shows adverse controllability in view of its neutronic characteristics such as decreased soluble boron worth and effective delayed-neutron fraction compared to the UO$_2$ fuel. In order to mitigate these disadvantages, we devised a new concept of the hybrid UO$_2$-MOX fuel pellet with dual structure such that its outer annular section contains. UO$_2$ fuel and its inner cylindrical bar contains MOX fuel. The lattice physics code HELIOS was used to evaluate the neutronic characteristics of three different types of fuel pellets ; UO$_2$ fuel pellet, MOX fuel pellet, and hybrid UO$_2$-MOX fuel pellet. Results show that the hybrid UO$_2$-MOX fuel pellet generally has intermediate neutronic tendency between UO$_2$ fuel and MOX which could diminish the problems arising from the use of the conventional MOX fuel.

  • PDF

Change of U Solubility by Mole Ratios of $UO_2$ Crucible/Zircaloy-4 Melt

  • Mok, Yong-Kyoon;Lee, Seung-Jae;Kim, Jae-Won;Yoon, Young-Ku
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.739-744
    • /
    • 1996
  • The U solubility in the Zircaloy melt including the other investigators' result was investigated in a range of reaction temperatures from 2223k to 2473k and for the mole ratios of UO$_2$ crucible/Zircaloy-4 melt(subsequently abbreviated as UO$_2$/Zry) from 2.4 to 18.2, The U solubility in the melt increased with increasing reaction temperature and with decreasing the mole ratio of UO$_2$/Zry. An empirical correlation was obtained as functions of UO$_2$/Zry mole ratio and reaction temperature including other investigators' results. The experimental results with use of internally heated fuel element simulators were analyzed by the empirical correlation from UO$_2$ crucible experiments.

  • PDF

COMPARISON OF NEUTRONIC BEHAVIOR OF UO2, (TH-233U)O2 AND (TH-235U)O2 FUELS IN A TYPICAL HEAVY WATER REACTOR

  • MIRVAKILI, SEYED MOHAMMAD;KAVAFSHARY, MASOOMEH ALIZADEH;VAZIRI, ATIYEH JOZE
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.315-322
    • /
    • 2015
  • The research carried out on thorium-based fuels indicates that these fuels can be considered as economic alternatives with improved physical properties and proliferation resistance issues. In the current study, neutronic assessment of $UO_2$ in comparison with two $(Th-^{233}U)O_2$, and $(Th-^{235}U)O_2$ thorium-based fuel loads in a heavy water research reactor has been proposed. The obtained computational data showed both thorium-based fuels caused less negative temperature reactivity coefficients for the modeled research reactor in comparison with $UO_2$ fuel loading. By contrast, $^{235}U$-containing thorium-based fuel and $^{235}U$-containing thorium-based fuel loadings in the thermal core did not drastically reduce the effective delayed neutron fractions and delayed neutron fractions compared to $UO_2$ fuel. A provided higher conversion factor and lower transuranic production in the research core fed by the thorium-based fuels make the fuel favorable in achieving higher cycle length and less dangerous and costly nuclear disposals.

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.

Effect of UO2+x Powders Produced at Different Oxidation Temperatures on the Properties of Pellet

  • Yoo, Ho-Sik;Lee, Seung-Jae;Kim, Jae-Ik;Song, Kun-Woo
    • 한국세라믹학회지
    • /
    • 제40권5호
    • /
    • pp.410-414
    • /
    • 2003
  • Characteristics of $UO_{2+x}$ powders oxidized at different temperatures were examined. Pellets were fabricated by adding these oxidation powders and their properties were also investigated. Particle size of the $UO_{2+x}$ powders decreased with increasing oxidation temperature while surface area increased. Only the powders oxidized at 35$0^{\circ}C$ enhanced the strength of green pellet. However, 35$0^{\circ}C$ oxidized powders added pellet had many surface defects. The difference of shrinkage rate between the oxidized and UO$_2$ powders was thought to be the cause of them.

EBSD studies on microstructure and crystallographic orientation of UO2-Mo composite fuels

  • Tummalapalli, Murali Krishna;Szpunar, Jerzy A.;Prasad, Anil;Bichler, Lukas
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4052-4059
    • /
    • 2021
  • The microstructure of the fuel pellet plays an essential role in fission gas buildup and release and is critical for the safe and continued operation of nuclear power stations. Structural analysis of uranium dioxide (UO2)-molybdenum (Mo) composite fuel pellets prepared at a range of sintering temperatures from 1300 to 1800 ℃ was performed. Mo micro and nanoparticles were used in making the composite pellets. A systematic investigation into the influence of processing parameters during Spark Plasma Sintering (SPS) of the pellets on the microstructure, texture, grain size, and grain boundary characters of UO2-Mo is presented. UO2-Mo composite show significant differences in the fraction of general boundaries and also special/coincident site lattice (CSL) boundaries. EBSD orientation maps demonstrated that <111> texturing was observed in the pellets fabricated at 1500 ℃. The experimental investigations suggest that UO2-Mo composite pellets have favorable microstructural features compared to the UO2 pellet.