Browse > Article
http://dx.doi.org/10.1016/j.net.2021.06.028

EBSD studies on microstructure and crystallographic orientation of UO2-Mo composite fuels  

Tummalapalli, Murali Krishna (Department of Mechanical Engineering, University of Saskatchewan)
Szpunar, Jerzy A. (Department of Mechanical Engineering, University of Saskatchewan)
Prasad, Anil (School of Engineering, University of British Columbia)
Bichler, Lukas (School of Engineering, University of British Columbia)
Publication Information
Nuclear Engineering and Technology / v.53, no.12, 2021 , pp. 4052-4059 More about this Journal
Abstract
The microstructure of the fuel pellet plays an essential role in fission gas buildup and release and is critical for the safe and continued operation of nuclear power stations. Structural analysis of uranium dioxide (UO2)-molybdenum (Mo) composite fuel pellets prepared at a range of sintering temperatures from 1300 to 1800 ℃ was performed. Mo micro and nanoparticles were used in making the composite pellets. A systematic investigation into the influence of processing parameters during Spark Plasma Sintering (SPS) of the pellets on the microstructure, texture, grain size, and grain boundary characters of UO2-Mo is presented. UO2-Mo composite show significant differences in the fraction of general boundaries and also special/coincident site lattice (CSL) boundaries. EBSD orientation maps demonstrated that <111> texturing was observed in the pellets fabricated at 1500 ℃. The experimental investigations suggest that UO2-Mo composite pellets have favorable microstructural features compared to the UO2 pellet.
Keywords
Nuclear fuel ($UO_2$); Accident tolerant fuel ($UO_2-Mo$); SPS sintering; Microstructure; Texture; Grain boundaries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533, https://doi.org/10.1016/j.jnucmat.2013.09.052.   DOI
2 X.M. Bai, M.R. Tonks, Y. Zhang, J.D. Hales, Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels, J. Nucl. Mater. 470 (2016) 208-215, https://doi.org/10.1016/j.jnucmat.2015.12.028.   DOI
3 M. Sekine, N. Sakaguchi, M. Endo, H. Kinoshita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano, M. Kawai, Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors, J. Nucl. Mater. 414 (2011) 232-236, https://doi.org/10.1016/j.jnucmat.2011.03.049.   DOI
4 G. Palumbo, E.M. Lehockey, P. Lin, Applications for grain boundary engineered materials, Jom 50 (1998) 40-43, https://doi.org/10.1007/s11837-998-0248-z.   DOI
5 J. Watts, G. Hilmas, W.G. Fahrenholtz, Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes, J. Am. Ceram. Soc. 94 (2011) 4410-4418, https://doi.org/10.1111/j.1551-2916.2011.04885.x.   DOI
6 E.A. West, G.S. Was, IGSCC of grain boundary engineered 316L and 690 in supercritical water, J. Nucl. Mater. 392 (2009) 264-271, https://doi.org/10.1016/j.jnucmat.2009.03.008.   DOI
7 S.C. Finkeldei, J.O. Kiggans, R.D. Hunt, A.T. Nelson, K.A. Terrani, Fabrication of UO2-Mo composite fuel with enhanced thermal conductivity from sol-gel feedstock, J. Nucl. Mater. (2019), https://doi.org/10.1016/j.jnucmat.2019.04.011.   DOI
8 L. Tan, T.R. Allen, J.T. Busby, Grain boundary engineering for structure materials of nuclear reactors, J. Nucl. Mater. 441 (2013) 661-666, https://doi.org/10.1016/j.jnucmat.2013.03.050.   DOI
9 J. Hu, A.C. Hayes, W.B. Wilson, Rizwan-Uddin, Fission gas production in reactor fuels including the effects of ternary fission, Nucl. Eng. Des. 240 (2010) 3751-3757, https://doi.org/10.1016/j.nucengdes.2010.08.020.   DOI
10 T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, R. Mehrabian, Matrix cracking in intermetallic composites caused by thermal expansion mismatch, Acta Metall. Mater. 39 (1991) 1883-1890, https://doi.org/10.1016/0956-7151(91)90157-V.   DOI
11 P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinnott, P. Peralta, B.P. Uberuaga, C.R. Stanek, Grain boundaries in uranium dioxide: scanning electron microscopy experiments and atomistic simulations, J. Am. Ceram. Soc. 94 (2011) 1893-1900, https://doi.org/10.1111/j.1551-2916.2010.04295.x.   DOI
12 J.J. Kai, F.R. Chen, T.S. Duh, Effects of grain boundary misorientation on radiation-induced solute segregation in proton irradiated 304 stainless steels, Mater. Trans. 45 (2004) 40-50, https://doi.org/10.2320/matertrans.45.40.   DOI
13 I. Amato, R.L. Colombo, A.M.P. Balzari, Hot-pressing of uranium dioxide, J. Nucl. Mater. 20 (1966) 210-214, https://doi.org/10.1016/0022-3115(66)90009-2.   DOI
14 K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X.Y. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. McClellan, B.P. Uberuaga, B.L. Scott, D.A. Andersson, Anisotropic thermal conductivity in uranium dioxide, Nat. Commun. 5 (2014) 1-7, https://doi.org/10.1038/ncomms5551.   DOI
15 B.R. Powell, G.E. Youngblood, D.P.H. Hasselman, L.D. Bentsen, Effect of thermal expansion mismatch on the thermal diffusivity of glass-Ni composites, J. Am. Ceram. Soc. 63 (1980) 581-586, https://doi.org/10.1111/j.1151-2916.1980.tb10769.x.   DOI
16 M. Lenzen, Current state of development of electricity-generating technologies: a literature review, Energies 3 (2010) 462-591, https://doi.org/10.3390/en3030462.   DOI
17 D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295, https://doi.org/10.1016/j.jnucmat.2015.04.003.   DOI
18 R.I. Todd, B. Derby, Thermal stress induced microcracking in alumina-20% SiCp composites, Acta Mater. 52 (2004) 1621-1629, https://doi.org/10.1016/j.actamat.2003.12.007.   DOI
19 S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. B Eng. 39 (2008) 933-961, https://doi.org/10.1016/j.compositesb.2008.01.002.   DOI
20 B. Burton, G.L. Reynolds, J.P. Barnes, The influence of grain size on the creep of uranium dioxide, J. Mater. Sci. 8 (1973) 1690-1694, https://doi.org/10.1007/BF02403517.   DOI
21 J.H. Yang, K.W. Song, Y.W. Lee, J.H. Kim, K.W. Kang, K.S. Kim, Y.H. Jung, Microwave process for sintering of uranium dioxide, J. Nucl. Mater. 325 (2004) 210-216, https://doi.org/10.1016/j.jnucmat.2003.12.003.   DOI
22 J.H. Yang, Y.W. Kim, J.H. Kim, D.J. Kim, K.W. Kang, Y.W. Rhee, K.S. Kim, K.W. Song, Pressureless rapid sintering of UO2assisted by high-frequency induction heating process, J. Am. Ceram. Soc. 91 (2008) 3202-3206, https://doi.org/10.1111/j.1551-2916.2008.02615.x.   DOI
23 L. Ge, G. Subhash, R.H. Baney, J.S. Tulenko, E. McKenna, Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS), J. Nucl. Mater. 435 (2013) 1-9, https://doi.org/10.1016/j.jnucmat.2012.12.010.   DOI
24 Y.T. Chen, The effect of interface texture on exchange biasing in Ni80Fe20/Ir20Mn80 system, Nanoscale Res. Lett. 4 (2009) 90-93, https://doi.org/10.1007/s11671-008-9207-4.   DOI
25 T. Ironman, J. Tulenko, G. Subhash, Exploration of viability of spark plasma sintering for commercial fabrication of nuclear fuel pellets, Nucl. Technol. 200 (2017) 144-158, https://doi.org/10.1080/00295450.2017.1360714.   DOI
26 C.B. Thomson, V. Randle, The effects of strain annealing on grain boundaries and secure triple junctions in nickel 200, J. Mater. Sci. 32 (1997) 1909-1914, https://doi.org/10.1023/A:1018573327408.   DOI
27 S. Spigarelli, M. Cabibbo, E. Evangelista, G. Palumbo, Analysis of the creep strength of a low-carbon AISI 304 steel with low-Σ grain boundaries, Mater. Sci. Eng., A 352 (2003) 93-99, https://doi.org/10.1016/S0921-5093(02)00903-6.   DOI
28 L.H. Ortega, B.J. Blamer, J.A. Evans, S.M. McDeavitt, Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3 Si2) with increased uranium loading, J. Nucl. Mater. 471 (2016) 116-121, https://doi.org/10.1016/j.jnucmat.2016.01.014.   DOI
29 S. Yeo, E. McKenna, R. Baney, G. Subhash, J. Tulenko, Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS), J. Nucl. Mater. 433 (2013) 66-73, https://doi.org/10.1016/j.jnucmat.2012.09.015.   DOI
30 W.J. Weber, A. Navrotsky, S. Stefanovsky, E.R. Vance, E. Vernaz, Materials science of high-level immobilization, MRS Bull. 34 (2009) 46-52.   DOI
31 H. Akhiani, M. Nezakat, M. Sanayei, J. Szpunar, The effect of thermomechanical processing on grain boundary character distribution in Incoloy 800H/HT, Mater. Sci. Eng., A 626 (2015) 51-60, https://doi.org/10.1016/j.msea.2014.12.046.   DOI
32 T. Watanabe, Part IV Applications : grain boundary engineering and microstructural design for advanced properties, in: Microstruct. Des. Adv. Eng. Mater., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2013, pp. 403-446, https://doi.org/10.1051/forest.   DOI
33 V. Randle, Sigma-boundary statistics by length and number, Interface Sci. 10 (2002) 271-277, https://doi.org/10.1023/A:1020877528820.   DOI
34 L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad, D.A. McClintock, Microstructure tailoring for property improvements by grain boundary engineering, J. Nucl. Mater. 374 (2008) 270-280, https://doi.org/10.1016/j.jnucmat.2007.08.015.   DOI
35 S. Xia, H. Li, T.G. Liu, B.X. Zhou, Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance, J. Nucl. Mater. 416 (2011) 303-310, https://doi.org/10.1016/j.jnucmat.2011.06.017.   DOI
36 X. Wang, F. Fan, J.A. Szpunar, L. Zhang, Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900 ℃, Mater. Char. 107 (2015) 33-42, https://doi.org/10.1016/j.matchar.2015.06.029.   DOI