• Title/Summary/Keyword: Nuclear fuel

Search Result 3,680, Processing Time 0.029 seconds

The Method for Evaluating Unsaturated Hydraulic Conductivity of the Bentonite-buffer Using Relative Humidity (상대습도를 이용한 벤토나이트 완충재의 불포화 수리전도도 평가방안)

  • Lee, Hang-Bok;Kim, Jin-Seop;Choi, Young-Chul;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • Unsaturated hydraulic conductivity of the bentonite-buffer was evaluated using the relative humidity data. The method for calculating unsaturated hydraulic conductivity was deduced from the general analytical equation representing the movement of water in unsaturated media, which was applied to the experimental results of water infiltration tests for identifying the behavior of unsaturated hydraulic conductivity according to the water saturation. Unlike the saturated condition, the hydraulic gradient and water flux were irregularly changed, and the unsaturated hydraulic conductivity was increased with increasing the experimental time. Swelling of bentonite grains due to the water absorption increased the volume and size of pore within bentonite, resulting in the increase of water velocity and unsaturated hydraulic conductivity. This result suggested the necessity of further investigation on the correlation between the swelling degree of bentonite-buffer and unsaturated hydraulic conductivity. The method used in this study can be useful technique for evaluating long-term hydraulic performance of bentonite-buffer in the radioactive waste disposal system.

Study on the Institutional Control Period Through the Post-drilling Scenario Of Near Surface Disposal Facility for Low and Intermediate-Level Radioactive Waste (중·저준위 방사성폐기물 천층처분시설에서 시추 후 거주시나리오 평가를 통한 폐쇄 후 제도적 관리기간 연구)

  • Hong, Sung-Wook;Park, Jin-Baek;Yoon, Jung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 2014
  • The public's access to the disposal facilities should be restricted during the institutional control period. Even after the institutional control period, disposal facilities should be designed to protect radiologically against inadvertent human intruders. This study is to assess the effective dose equivalent to the inadvertent intruder after the institutional control period thorough the GENII. The disposal unit was allocated with different kind of radioactive waste and the effects of the radiation dose to inadvertent intruder were evaluated in accordance with the institutional control period. As a result, even though there is no institutional control period, all were satisfied with the regulatory guide, except for the disposal unit with only spent filter. However, the disposal unit with only spent filter was satisfied with the regulatory guide after the institutional control period of 300 years. But the disposal unit with spent filter mixed with dry active waste could shorten the institutional control period. So the institutional control period can be reduced through the mixing the other waste with spent filter in disposal unit. Therefore, establishing an appropriate plan for the disposal unit with spent filter and other radioactive waste will be effective for radiological safety and reduction of the institutional control period, rather than increasing the institutional control period and spending costs for the maintenance and conservation for the disposal unit with only spent filter.

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

A Sensitivity Study on Nuclide Release from the Near-field of the Pyroprocessed Waste Repository System: Part 1. A Probabilistic Approach (파이로처리 폐기물 처분 시스템 근계 영역 내 핵종 유출 민감도: 제 1 부 확률론적 접근)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.19-35
    • /
    • 2014
  • A parametric sensitivity to the annual exposure dose rate to the farming exposure group has been probabilistically carried out for three principal elements associated with the nuclide transport behavior in the near-field of the pyroprocessed waste repository system. Credit time for both metal and ceramic containers, annual nuclide release rete, and the degree of loss of bentonite buffer around the container are selected as the elements and investigated for important nuclides. All the elements are shown to be sensitive to the results. Methodology studied through this study and the results are expected to make a good feedback to the repository design. As a follow-up study, separated in Part 2, the A-KRS will be deterministically assessed and then compared among each other with the normal, the worst, and the best case scenarios associated with their extreme values these elements could have.

Transport Parameters of 99Tc, 137Cs, 90Sr, and 239+240Pu for Soils in Korea

  • Keum, D.K.;Kim, B.H.;Jun, I.;Lim, K.M.;Choi, Y.H.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • To characterize quantitatively the transport of $^{99}Tc$ and the global fallout ($^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$) for soils in Korea, the transport parameters of a convective-dispersion model, apparent migration velocity, and apparent dispersion coefficient were estimated from the vertical depth profiles of the radionuclides in soils. The vertical profiles of $^{99}Tc$ were measured from a pot experiment for paddy soil that had been sampled from a rice-field around the Gyeongju radioactive waste repository in Korea, and the vertical depth distributions of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were measured from the soil samples that were taken from local areas in Korea. The front edge of the $^{99}Tc$ profiles reached a depth of about 12 cm in 138 days, indicating a faster movement than the fallout radionuclides. A weak adsorption of $^{99}Tc$ on the soil particles by the formation of Tc(VII) and a high water infiltration velocity seemed to have controlled the migration of $^{99}Tc$. The apparent migration velocity and dispersion coefficient of $^{99}Tc$ for the disturbed paddy soil were 2.88 cm/y and 6.3 $cm^2/y$, respectively. The majority of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were found in the top 20 cm of the soils even after a transport of about 30 years. The transport parameters for the global fallout radionuclides were 0.01-0.1cm/y ($^{137}Cs$), 0.09-0.13cm/y ($^{90}Sr$), and 0.09-0.18cm/y ($^{239+240}Pu$) for the apparent migration velocity: 0.21-1.09 $cm^2/y$ ($^{137}Cs$), 0.12-0.7$cm^2/y$ ($^{90}Sr$), and 0.09-0.36$cm^2/y$ ($^{239+240}Pu$) for the apparent dispersion coefficient.

Characteristics of Solidified Cement of Electrokinetically Decontaminated Soil and Concrete Waste (동전기 제염 토양 및 콘크리트 폐기물의 시멘트 고화 특성)

  • Koo, Daeseo;Sung, Hyun-Hee;Hong, Sang Bum;Seo, Bum Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • While using an electrokinetic method to analyze the characteristics of cement solidification of radioactive wastes from decontaminated uranium soil and concrete, the compressive strength, pH, electrical conductivity, irradiation effects, and volume expansion were measured for the solidified cement specimens. The workability of cement solidified from radioactive waste was about 170-190%. After the solidified cement was irradiated, the compressive strength decreased by about 15%, but met the criteria ($34kgf{\cdot}cm^{-2}$) of KORAD (Korea Radioactive Waste Agent). According to the results of SEM-EDS for solidified cement, the aluminum phase was well combined with cement, while the calcium phase was separated from cement. The volume of solidified cement in radioactive wastes was dependent on the waste-to-cement ratio and the amount of water, and increased by about 30% under the conditions used in this study. Therefore, it was concluded that permanent disposal of electrokinetically decontaminated radioactive wastes is appropriate.

Review of Site Characterization Methodology for Deep Geological Disposal of Radioactive Waste (방사성폐기물의 심층 처분을 위한 부지특성조사 방법론 해외 사례 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Jo, Yeonguk;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.239-256
    • /
    • 2017
  • In the process of site selection for a radioactive waste disposal, site characterization must be carried out to obtain input parameters to assess the safety and feasibility of deep geological repository. In this paper, methodologies of site characterization for radioactive waste disposal in Korea were suggested based on foreign cases of site characterization. The IAEA recommends that site characterization for radioactive waste disposal should be performed through stepwise processes, in which the site characterization period is divided into preliminary and detailed stages, in sequence. This methodology was followed by several foreign countries for their geological disposal programs. General properties related to geological environments were obtained at the preliminary site characterization stage; more detailed site characteristics were investigated during the detailed site characterization stage. The results of investigation of geology, hydro-geology, geochemistry, rock mechanics, solute transport and thermal properties at a site have to be combined and constructed in the form of a site descriptive model. Based on this site descriptive model, the site characteristics can be evaluated to assess suitability of site for radioactive waste disposal. According to foreign site characterization cases, 7 or 8 years are expected to be needed for site characterization; however, the time required may increase if the no proper national strategy is provided.

Trend of Space Development and Issue (우주개발동향과 주요 이슈)

  • Cho, Hong-Je;Shin, Yong-Do
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.97-126
    • /
    • 2014
  • October 4, 1957 the Soviet Sputnik 1 was launched into space the first time in the history of mankind. After launching, the realm of humankind was expanded to space. Today all countries of the world wage a fierce competition in order to utilize space for various purposes. World powers of space such as United States, Russia, China, and Japan, put reconnaissance satellites and ocean surveillance satellites into orbit, being able to easily see equipment and troops movement on earth. Each country makes efforts to occupy space assets through the militarization of space and expand national interests. Recently private companies or individuals involved in commercial space activities are becoming more prevalent. Thus, in addition to space activities for military purposes, commercial space activities become widespread. Individuals and private companies as well as nations are also involved in space activities. Outer space is not the monopoly of space powers such as the United States and Russia. The whole human race can benefit from free access to space, being the common heritage of mankind. In particular, outer space becomes an indispensable element of military activities and human life. Many countries are now entering space development, putting a lot of budget into new development programs. Republic of Korea also built the Narodo Space Center, starting its space development with budget and manpower. We have to find out ways to use space not only for military purposes but also for commercial space activities that can contribute to the national economy. In addition, through the joint efforts of the international community, we have to make efforts for preservation and peaceful use of space. Various issues relating to space activities and research should be studies in order to contribute to the progress of humanity. Those issues include the definition of outer space, space debris reduction and environmental conservation issues, non-bind measure cooperation - European International Code of Conduct, space law and national legislation related empowerment issues, arms control measures in space, and restrictions on the use of nuclear fuel. We also need to be involved in the discussion of those issues as one of responsible space countries. In addition, we try to find out regional cooperation schemes such as the ESA in the Europe actively. Currently in the Northeast Asia, cooperation bodies led by Japan and China respectively, are operated in the confrontational way. To avoid such confrontation, a new cooperative body needs to be established for cooperation on space exploration and information. The system to allow the exchange of satellite information for early warning of natural disasters needs to be built as well. In addition, efforts to enhance the effectiveness of the relevant international treaties on space, and fill in the blanks in international space laws should be made at the same time. To this end, we have to do a leading role in the establishment of standards such as non-binding measures (resolution) - Code of Conduct, being discussed in the UN and other organizations, and compliance with those standards. Courses in aerospace should be requires in law schools and educational institutes, and professional manpower need to be nurtured. In addition, the space-related technology and policy needs to be jointly studied among the private, public, and military groups, and the cross exchange among them should be encouraged.

Development of Shielding Analysis System for the Reactor Vessel by $R-{\theta}$ Coordinate Geometry ($R-{\theta}$ 좌표계에 의한 원자로 압력용기 차폐해석체계 개발)

  • Kim, Ha-Yong;Koo, Bon-Seung;Kim, Kyo-Youn;Lee, Chung-Chan;Zee, Sung-Quun
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • A new developing reactor isn't fixed the structure and the materials of reactor components. To perform the shielding analysis for a reactor vessel by $R-\theta$ geometry, it takes much effort and time to modeling of source term according to the change of reactor components every time. Therefore, we developed the shielding analysis system for the reactor vessel by $R-{\theta}$ geometry, which wasn't affected by the reactor core geometry. By using the developed shielding analysis system, we performed the shielding analysis for the reactor vessel of an integral reactor which has the hexagonal geometry of nuclear fuel assemblies in reactor core. We compared the results obtained from the developed system with those obtained from MCNP analysis. Because the results of developed shielding analysis system were more conservative than those of MCNP calculation, it is useful for shielding analysis. As we had developed the new shielding analysis system for a reactor vessel by $R-{\theta}$ geometry, we reduced error of model for reactor core which was formerly designed by hand and saved the time and the effort to design source term model of reactor core.

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.