DOI QR코드

DOI QR Code

Characteristics of Solidified Cement of Electrokinetically Decontaminated Soil and Concrete Waste

동전기 제염 토양 및 콘크리트 폐기물의 시멘트 고화 특성

  • Received : 2017.10.16
  • Accepted : 2018.01.10
  • Published : 2018.03.30

Abstract

While using an electrokinetic method to analyze the characteristics of cement solidification of radioactive wastes from decontaminated uranium soil and concrete, the compressive strength, pH, electrical conductivity, irradiation effects, and volume expansion were measured for the solidified cement specimens. The workability of cement solidified from radioactive waste was about 170-190%. After the solidified cement was irradiated, the compressive strength decreased by about 15%, but met the criteria ($34kgf{\cdot}cm^{-2}$) of KORAD (Korea Radioactive Waste Agent). According to the results of SEM-EDS for solidified cement, the aluminum phase was well combined with cement, while the calcium phase was separated from cement. The volume of solidified cement in radioactive wastes was dependent on the waste-to-cement ratio and the amount of water, and increased by about 30% under the conditions used in this study. Therefore, it was concluded that permanent disposal of electrokinetically decontaminated radioactive wastes is appropriate.

우라늄 토양 및 콘크리트 폐기물의 동전기 제염 후 방사성폐기물의 시멘트 고화특성을 분석하기 위하여, 시멘트 고화 유동성 시험을 수행하고 시멘트 고화 시료를 제작하였다. 시멘트 고화시료에 대하여 압축강도, pH, 전기전도도, 방사선조사 효과 및 부피증가를 분석하였다. 방사성폐기물의 시멘트 고화의 작업 적정도는 175~190% 정도였다. 시멘트 고화시료의 방사선 조사 후 압축강도는 방사선 조사 전 압축강도 보다 약 15% 감소하였으나, 한국원자력환경공단 인수기준 ($34kgf{\cdot}cm^{-2}$)을 만족하였다. 동전기 제염 후 방사성폐기물의 시멘트 고화 시료에 대한 SEM-EDS 분석결과, 알루미늄상은 시멘트와 잘 결합한 형상을 나타낸 반면, 칼슘상은 시멘트와 분리된 형상을 나타내었다. 방사성폐기물의 시멘트 고화 부피는 시멘트에 대한 폐기물의 배합과 수분량에 따라 다르게 나타났다. 방사성폐기물의 시멘트 고화 부피(C-2.0-60)는 약 30% 증가였으며 동전기 제염 후 생성된 방사성폐기물의 영구처분은 적절하다고 판단되었다.

Keywords

References

  1. Y.J. Lee, K.W. Lee, B.Y. Min, D.S. Hwang, and J.K. Moon, "The Characterization of Cement Waste Form for Final Disposal of Decommissioning Concrete Wastes", Ann. Nucl. Energy, 77, 294-299 (2015). https://doi.org/10.1016/j.anucene.2014.11.027
  2. Y.S. Nam, C.M. Lee, D.S. Yook, S.C. Lee, Y.H. Lee, M.H. Ahn, J.W. Park, and K.J. Lee. A Study on the Environmental Effect Assessment for the Disposal of the Regulatory Cleared Soil and Concrete Waste, Korea Atomic Energy Research Institute Report, 1-50, KAERI-CM-1029 (2007).
  3. D.S. Koo, H.H. Sung, S.S. Kim, G.N. Kim, J.W. Choi, "Characteristics of Cement Solidification of Metal Hydroxide Waste", Nucl. Eng. and Tech., 49, 165-171 (2017). https://doi.org/10.1016/j.net.2016.08.010
  4. G.H. Jeong, K.J. Jung, S.T. Baik, U.S. Chung, K.W. Lee, S.K Park, D.G. Lee, and H.R. Kim. Solidification of Slurry Waste with Ordinary Portland Cement, Korea Atomic Energy Research Institute Report, 1-28, KAERI-RR-2194 (2001).
  5. U.S. Nuclear Regulatory Commission, Waste Form Technical Position, Revision 1, A-1-A-8, Washington (1991).
  6. L. Junfeng and W. Jianlong, "Advances in Cement Solidification Technology for Waste Radioactive Ion Exchange Resins: A Review", J. of Hazard. Mater., B135, 443-448 (2006).
  7. J.W. McConnel Jr, "Portland Cement: A Solidification Agent for Low-Level Radioactive Waste", INEL, National Low-Level Waste Management Program, 1-8, EG&G Idaho (1991).
  8. K.H. Kim, J.W. Lee, and Y.G. Ryue. Evaluation on the Long-Term Durability and Leachability of Cemented Waste Form, Korea Atomic Energy Research Institute Report, 1-47, KAERI-TR-1118 (1998).
  9. C.M. Wilk, "Principles and Use of Solidification/Stabilization Treatment for Organic Hazardous Constituents in Soil, Sediment, and Waste", Proc. of the Waste Management 2007 Conference, 1-10, February 25-March 1, 2007, Tucson, AZ, USA.

Cited by

  1. 원전 해체 콘크리트 폐기물의 재활용에 대한 고찰 vol.54, pp.2, 2021, https://doi.org/10.9719/eeg.2021.54.2.285