• 제목/요약/키워드: Nuclear factors

검색결과 1,617건 처리시간 0.034초

IDENTIFICATION AND EVALUATION OF HUMAN FACTORS ISSUES ASSOCIATED WITH EMERGING NUCLEAR PLANT TECHNOLOGY

  • O'Hara, John M.;Higgins, James C.;Brown, William S.
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.225-236
    • /
    • 2009
  • This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

Radiation risk perception and its associated factors among residents living near nuclear power plants: A nationwide survey in Korea

  • Sung, Hyoju;Kim, Jung Un;Lee, Dalnim;Jin, Young Woo;Jo, Hyemi;Jun, Jae Kwan;Park, Sunhoo;Seo, Songwon
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1295-1300
    • /
    • 2022
  • There has been increased interest in researching risk perception of radiation to implement successful risk communication, particularly given the recent worldwide nuclear policy movement regarding nuclear energy. This study aimed to investigate characteristics of risk perception among residents living near normally operating nuclear power plants in South Korea by identifying factors associated with risk perception. A survey was conducted with face-to-face interviews for 1200 residents aged 20e84 years by gender- and age-stratified random sampling. Risk perception was associated with trust perception in nuclear safety, but was not highly correlated with benefit perception for utilizing nuclear power. Relatively high risk perception was observed in women, older age groups, and residents not having experience of nuclear-related education or work. This association remained after adjusting for other factors including benefit perception, trust perception, and psychological distress. In addition to these individual characteristics, risk perception was also associated with a residential district's own unique context, indicating that a strategy of risk communication should be developed differently for residents facing nuclear-related circumstances. Given that risk perception can be changed, depending on social values such as safety culture and economic setting, further studies are required to understand the changing characteristics of radiation risk perception.

Acceleration of the AFEN Method by Two-Node Nonlinear Iteration

  • Moon, Kap-Suk;Cho, Nam-Zin;Noh, Jae-Man;Hong, Ser-Gi
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.87-92
    • /
    • 1998
  • A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface noes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AEFEN method and the computing time is significantly reduced in comparison with the original AFEN method.

  • PDF

Preliminary analyses on decontamination factors during pool scrubbing with bubble size distributions obtained from EPRI experiments

  • Lee, Yoonhee;Cho, Yong Jin;Ryu, Inchul
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.509-521
    • /
    • 2021
  • In this paper, from a review of the size distribution of the bubbles during pool scrubbing obtained from experiments by EPRI, we apply the bubble size distributions to analyses on the decontamination factors of pool scrubbing via I-COSTA (In-Containment Source Term Analysis). We perform sensitivity studies of the bubble size on the various mechanisms of deposition of aerosol particles in pool scrubbing. We also perform sensitivity studies on the size distributions of the bubbles depending on the diameters at the nozzle exit, the molecular weights of non-condensable gases in the carrier gases, and the steam fractions of the carrier gases. We then perform analyses of LACE-ESPANA experiments and compare the numerical ~ results to those from SPARC-90 and experimental results in order to show the effect of the bubble size distributions.

Fuzziness in Radiation Protection and Nuclear Safety (Human Factors and Reliability)

  • Nishiwaki, Yasushi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1047-1050
    • /
    • 1993
  • In radiation protection and nuclear safety, there are many uncertainties or fuzziness due to subjective human judgement. It is desirable to have a theory by which both non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. Fuzzy set theory seems to be an effective tool for analyzing the risk and safety of complex man-machine systems such as nuclear power plants.

  • PDF

원자력 발전소 인간공학 프로그램 (Human factors engineering progrma in nuclear power plant)

  • 나정창;이호형
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 추계학술대회논문집
    • /
    • pp.125-140
    • /
    • 1996
  • Human Factors Engineering(HFE) program should be developed from the early stage of the design process for Nuclear Power Plant. The HFE program is conducted in accordance with the guidance in the Standard Review Plan(SRP) NUREG 0800, Chapter 18. The major purpose of this program is to reduce the incidence of human error during the operating life of the plants. A comprehensive human factors program is prepared by KOPEC to assure that key elements of human factors involvement are not inadvertently overlooked and the early, complete, and continuing inclusion of HFE in the design process. This paper is to introduce engineering steps of the HF activities to verify that the HF involvements on man-machine interface are adequate to support safe and efficient operation of nuclear power plant. If systems are developed without sufficient consideration on the HFE in the design, such systems may cost a high price due to the malfunction of the plant induced by the human errors.

  • PDF

Integrated risk assessment method for spent fuel road transportation accident under complex environment

  • Tao, Longlong;Chen, Liwei;Long, Pengcheng;Chen, Chunhua;Wang, Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.393-398
    • /
    • 2021
  • Current risk assessment of Spent Nuclear Fuel (SNF) transportation has the problem of the incomplete risk factors consideration and the general particle diffusion model utilization. In this paper, the accident frequency calculation and the detailed simulation of the accident consequences are coupled by the integrated risk assessment method. The "man-machine-environment" three-dimensional comprehensive risk indicator system is established and quantified to characterize the frequency of the transportation accidents. Consideration of vegetation, building and turbulence effect, the standard k-ε model is updated to simulate radioactive consequence of leakage accidents under complex terrain. The developed method is applied to assess the risk of the leakage accident in the scene of the typical domestic SNF Road Transportation (SNFRT). The critical risk factors and their impacts on the dispersion of the radionuclide are obtained.