• 제목/요약/키워드: Nuclear factor-kappa B (NF-${\kappa}$B)

검색결과 813건 처리시간 0.029초

The Effects of Platycodi Radix on the Induction of LPS and the Activation of $NF-{\kappa}Bp$, the Lung Disease of White Rats

  • Kim Hyun-Joong;Park Dong-Il;Kim Won-Il
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.18-25
    • /
    • 2005
  • Objective & Methods: We examined the effects of Platycodi radix on the process of lipopolysaccharide (LPS)-induced nuclear factor $NF-{\kappa}Bp65$ and inhibitory $(I)-{\kappa}B{\alpha}$ alteration in RAW 264.7 cells and acute lung injury in rats. Results: Immunoblot analysis showed that LPS-induced degradation of $I-{\kappa}B{\alpha}$ in RAW 264.7 was inhibited by pretreatment of Platycodi radix. The total cells of bronchoalveolar lavage fluid by LPS challenge markedly decreased in the Platycodi radix pretreatment rats. Platycodi radix pretreatment also caused a decline in neutrophils infiltration into interstitium of the lung. In the alveolar macrophages and neutrophils, decreased $NF-{\kappa}Bp65$ and inducible nitric oxide synthase and increased $I-{\kappa}B{\alpha}$ immunoreaction were detected in Platycodi radix pretreated rats compared with LPS alone treated ones. Conclusion : It may be concluded that Platycodi radix attenuates the development of LPS-induced inflammation by reduction of $NF-{\kappa}Bp65$ activation and neutrophil-mediated acute lung injury. Platycodi radix would be useful as a therapeutic agent for endotoxin-induced lung disease.

  • PDF

Lipopolysaccharide로 유발된 HepG2 세포의 염증반응에 대한 가감청간탕의 효과에 대한 연구 (The effect of Gagamchunggan-tang on lipopolysaccharide-induced expression of $NF{\kappa}-B$ downstream genes in HepG2 cell)

  • 김성환;서상호;홍상훈
    • 대한한방내과학회지
    • /
    • 제24권1호
    • /
    • pp.113-122
    • /
    • 2003
  • Objective : The aim of this study was to evaluate the efficacy of Gagamchunggan-tang on anti-inflammation reaction with lipopolysaccharide (LPS)-induced HepG2 cell. Method : We examined the effects of the Gagamchunggan-tang, a traditional drug for liver inflammation, on the process of lipopolysaccharide(LPS)-induced nuclear factor-${\kappa}Bp65(NF-{\kappa}Bp65)$ activation in HepG2 cell. SDS-PAGE, Western blotting, Immunofluorescence staining were studied. Results : Immunoblot analysis showed that the level of nucleic $NF-{\kappa}Bp65$ was rapidly up-regulated and cytosolic inhibitory $I-{\kappa}B{\alpha}$ was down-regulated by LPS challenge. While Gagamchunggan-tang inhibited an increase of $NF-{\kappa}Bp65$ and degradation of $I-{\kappa}B{\alpha}$ in HepG2 cell. Besides LPS-induced expression of a group of genes, such as tumor necrosis factor-${\alpha}(TNF-{\alpha})$, inducible nitric oxide synthase(iNOS) and cyclooxygenase-2 (COX-2), are repressed by Gagamchunggan-tang. It may be concluded that Gagamchunggan-tang attenuates the progress of LPS-induced inflammation by reduction of $NF-{\kappa}Bp65$ activation. Conclusion : The Gagamchunggan-tang would be useful as a therapeutic agent for endotoxin-induced liver disease.

  • PDF

Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo;Won, Tae-Joan;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • 제27권9호
    • /
    • pp.954-960
    • /
    • 2004
  • Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제21권5호
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.

Effects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study

  • Kim, In-Sub;Jo, Won-Min
    • Journal of Chest Surgery
    • /
    • 제50권3호
    • /
    • pp.144-152
    • /
    • 2017
  • Background: The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and androgen receptor (AR) have been reported to be mediators of CMP and heart failure. This study drew upon pathophysiologic studies and the analysis of $NF-{\kappa}B$ and AR to assess the cardioprotective effects of MG132 in a left ventricular hypertrophy (LVH) rat model. Methods: We constructed a transverse aortic constriction (TAC)-induced LVH rat model with 3 groups: sham (TAC-sham, n=10), control (TAC-cont, n=10), and MG132 administration (TAC-MG132, n=10). MG-132 (0.1 mg/kg) was injected for 4 weeks in the TAC-MG132 group. Pathophysiologic evaluations were performed and the expression of AR and $NF-{\kappa}B$ was measured in the left ventricle. Results: Fibrosis was prevalent in the pathologic examination of the TAC-cont model, and it was reduced in the TAC-MG132 group, although not significantly. Less expression of AR, but not $NF-{\kappa}B$, was found in the TAC-MG132 group than in the TAC-cont group (p<0.05). Conclusion: MG-132 was found to suppress AR in the TAC-CMP model by blocking the UPS, which reduced fibrosis. However, $NF-{\kappa}B$ expression levels were not related to UPS function.

DA-9201 Shows Anti-Asthmatic Effects by Suppressing NF-$\kappa$B Expression in an Ovalbumin-Induced Mouse Model of Asthma

  • Lee Seung-Ho;Seo Mi Jung;Choi Seul Min;Sohn Yong Sung;Kang Kyung Koo;Ahn Byoung Ok;Kwon Jong Won;Yoo Moohi
    • Archives of Pharmacal Research
    • /
    • 제28권12호
    • /
    • pp.1350-1357
    • /
    • 2005
  • Nuclear factor kappa B (NF-$\kappa$B) regulates the expression of multiple cytokines, chemokines, and cell adhesion molecules that are involved in the pathogenesis of asthma. We investigated the anti-asthmatic effects and the mechanism of action of DA-9201, an extract of the black rice, in a mouse model of asthma. Mice immunized with ovalbumin (OVA) were administered with DA-9201 (30, 100 or 300 mg/kg) or dexamethasone (DEXA, 3 mg/kg) for 2 weeks and challenged with aerosolized OVA during the last 3 days. Anti-asthmatic effects were assessed by means of enhanced pauses, level of total lgE and Th2 cytokines in plasma or bronchoalveolar lavage fluid (BALF), the percentage of eosinophils in BALF, and histopathological examination. The expression of NF-$\kappa$B in nuclear and cytoplasmic fraction and its DNA-binding activity in lung tissues were analyzed by means of Western blotting and electrophoretic gel mobility shift assay (EMSA), respectively. DA-9201 significantly reduced airway hyperrespon-siveness (AHR), total lgE level in plasma and BALF, IL-4, IL-5, and IL-13 levels in BALF, and the percentage of eosinophils in BALF. Tissue inflammation was significantly improved by DA­9201 treatment. In addition, DA-9201 dramatically suppressed the expression of NF-$\kappa$B and its DNA-binding activity. These results suggest that DA-9201 may be useful for the treatment of asthma and its efficacy is related to suppression of NF-$\kappa$B pathway.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • 제10권3호
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

Ovalbumin에 의해서 유도된 inducible nitric oxide synthase 발현에 대한 phenethyl isothiocyanate의 억제효과 (Phenethyl Isothiocyanate Inhibits Ovalbumin-induced Inducible Nitric Oxide Synthase Expression)

  • 신화정;윤형선
    • 한국식품과학회지
    • /
    • 제44권6호
    • /
    • pp.759-762
    • /
    • 2012
  • 이번 실험을 통하여 PEIC가 OVA에 의해 유도된 NF-${\kappa}B$ 활성과 iNOS, COX-2 발현에 어떠한 영향을 미치는지 알아 보았다. PEIC는 OVA에 의해 유도된 NF-${\kappa}B$ 활성을 억제시켰다. 또한 PEIC는 OVA에 의해 유도된 iNOS의 발현도 억제시켰다. 하지만 PEIC는 OVA에 의해 유도된 COX-2 발현은 억제시키지 못하였다. 이러한 결과는 iNOS와 COX-2가 서로 다른 메커니즘에 의해 조절된다는 것을 암시한다. 또한 PEIC는 알러지와 같은 만성적인 질병들을 조절할 수 있는 치료제 개발 및 백신 제조에 중요한 역할을 할 것으로 기대한다.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

PDTC Inhibits $TNF-{\alpha}-Induced$ Apoptosis in MC3T3E1 Cells

  • Chae, Han-Jung;Bae, Jee-Hyeon;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.199-205
    • /
    • 2003
  • Osteoblasts are affected by TNF-${\alpha}$ overproduction by immune cells during inflammation. It has been suggested that functional $NF-{\kappa}B$ sites are involved in TNF-${\alpha}$-induced bone resorption. Thus, we explored the effect of pyrrolidine dithiocarbamate (PDTC), which potently blocks the activation of nuclear factor $(NF-{\kappa}B)$, on the induction of TNF-${\alpha}$-induced activation of JNK/SAPK, AP-1, cytochrome c, caspase and apoptosis in MC3T3E1 osteoblasts. Pretreatment of the cells with PDTC blocked TNF-${\alpha}$-induced $NF-{\kappa}B$ activation. TNF-${\alpha}$-induced activation of AP-1, another nuclear transcription factor, was suppressed by PDTC. The activation of c-Jun N-terminal kinase, implicated in the regulation of AP-1, was also down regulated by PDTC. TNF-${\alpha}$-induced apoptosis, release of cytochrome c and subsequent activation of caspase-3 were abolished by PDTC. TNF-${\alpha}$-induced apoptosis was partially blocked by Ac-DEVD-CHO, a caspase-3 inhibitor, suggesting that caspase-3 is involved in TNF-${\alpha}$-mediated signaling through $NF-{\kappa}B$ in MC3T3E1 osteoblasts. Thus, these results demonstrate that PDTC, has an inhibitory effect on TNF-${\alpha}$-mediated activation of JNK/SAPK, AP-1, cytochrome c release and subsequent caspase-3, leading to the inhibition of apoptosis. Our study may contribute to the treatment of TNF-${\alpha}$-associated immune and inflammatory diseases such as rheumatoid arthritis and periodontal diseases.