• Title/Summary/Keyword: Nuclear factor of activated T cells

Search Result 101, Processing Time 0.034 seconds

T-lymphocyte Inactivation and Anti-atopic Effects of Diarylheptanoid Hirsutenone Isolated from Alnus japonica (오리나무유래 디아릴헵타노이드 허수테논의 T 세포활성억제 및 항아토피 효능연구)

  • Lee, Do Ik;Seo, Seong Jun;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.508-514
    • /
    • 2013
  • 2Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University Recently, we reported that diarylheptanoid hirsutenone (HST) effectively inactivated T lymphocytes. However, it has not been evaluated whether HST is involved in calcineurin or calmodulin inactivation. In the present study, cells were treated with T-cell inhibitors with or without HST. Our results revealed that HST successfully inhibited expression of T-helper type I (Th1) and Th2 cytokines. Co-treatment with HST and nuclear factor-activated T cell (NFAT) activation inhibitor III (INCA-6) showed a more sensitive effect than that with other inhibitors, suggesting that HST contributes to inhibition of dephosphorylation of NFAT in the cytosol. HST up-regulated cell cycle arrest genes and inhibited the growth of Staphylococcus aureus. These effects were confirmed in an NFAT electrophoretic-mobility shift assay via successful inhibition of NFAT translocation and in the histological recovery in a 2,4-dinitrochloro benzene-induced in vivo model. Taken together, HST was shown to effectively inhibit T-cell activation via inhibition of cytosolic NFAT dephosphorylation, similar to INCA-6.

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum;Jang, Seon-A;Namkoong, Seung;Lee, Jin Woo;Park, Yuna;Kim, Sung Hyeok;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.583-590
    • /
    • 2020
  • Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

Correlation of Oct4 and FGF4 Gene Expression on Peri-implantation Bovine Embryos Reconstructed with Somatic Cell

  • K. S. Chung;Yoon, B. S;S. J. Song;Park, Y. J.;S. B. Hong;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.329-338
    • /
    • 2002
  • This study was carried out to investigate the developmental rates of embryo reconstructed with different cell type and to estimate correlation of transcriptional level of octamer-binding transcription factor 4 (Oct4) and fibroblast growth factor 4 (FCF4) gene on peri-implantation stage embryos. Donor cells were transferred into perivitelline space of enucleated oocytes. The karyoplast-cytoplast couplets were accom- plished by cell to cell fusion and activated with ionomycin and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CR 1 aa medium. There is no difference in blastocyst formation rate following nuclear transfer UT) with fetal fibroblast cell (16/50; 32.0%), cumulus cell (16/49; 32.6%) and ear cell (17/52; 32.6%). The expression level of Oct4 and FCF4 in peri-implantation bovine embryo derived from in vitro fertilization (IVF) and NT were determined by reverse-transcription polymerase chain reaction (RT-PCR) technique. In peri-implantation of IVF result in a transient increased of FCF4 paralleled by an increased expression of Oct4. However, Oct4 gene was highly expressed in hatching blastocysts derived from NT compared to IVF. Also, FGF4 expression level in hatching blastocysts and outgrowth stage derived from NT was lower than that of IVF. In conclusion, it is suggested that the different transcription patterns observed in nuclear transfer embryos may lead to a lower rate of embryo development, implantation and pregnancy.

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

Protective Effect of Betula Platyphylla on Ultraviolet B-irradiated HaCaT Keratinocytes (화피(樺皮) 에탄올 추출물의 Ultraviolet B로 자극한 피부 각질 세포 보호 작용)

  • Hag Soon Choi;Hyun Joo Kim;Hark Song Lee;Seung Won Paik;Ji Eun Kim;Yung Sun Song
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • Objectives: Betula Platyphylla(BP) has been used as a analgesic, anti-microbial, anti-oxidant drug in Eastern Asia. However, it is still unknown whether BP ethanol extract could exhibit the inhibitory activities against ultraviolet B(UVB)-induced skin injury on human keratinocytes, HaCaT cells. This study was aimed to investigate the protective activity of BP ethanol extract on UVB-irradiated skin injury in HaCaT cells. Methods: The skin injury model of HaCaT cells was established under UVB stimulation. HaCaT keratinocyte cells were pre-treated with BP ethanol extract for 1 h, and then stimulated with UVB. Then, the cells were harvested to measure the cell viability, production of reactive oxygen species(ROS), pro-inflammatory cytokines such as interleukin(IL) 1-beta, IL-6, and tumor necrosis factor(TNF)-𝛼, hyaluronidase, type 1 collagen, matrix metalloproteinase(MMP)s. In addition, we examined the mitogen activated protein kinases(MAPKs) and inhibitory kappa B alpha(I𝜅;-B𝛼) as inhibitory mechanisms of BP ethanol extract. Results: The treatment of BP ethanol extract inhibited the UVBinduced cell death and ROS production in HaCaT cells. BP ethanol extract treatment inhibited the UVB-induced increase of IL-1beta, IL-6, and TNF-𝛼. BP ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. BP ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of BP ethanol extract could inhibit the UVB-induced skin injury via deactivation of MAPKs and nuclear factor kappa B(NF-𝜅B) in HaCaT cells. This study could suggest that BP ethanol extract could be a beneficial agent to prevent skin damage or inflammation.

Ethyl Docosahexaenoate and Its Acidic Form Increase Bone Formation by Induction of Osteoblast Differentiation and Inhibition of Osteoclastogenesis

  • Choi, Bo-Yun;Eun, Jae-Soon;Nepal, Manoj;Lee, Mi-Kyung;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • Bone remodeling is a dynamic process involving a constant balance between osteoclast-induced bone resorption and osteoblast-induced bone formation. Osteoclasts play a crucial homeostatic role in skeletal modeling and remodeling, and destroy bone in many pathological conditions. Previously, we reported that the hexane soluble fraction of Ficus carica inhibited osteoclast differentiation. Poly unsaturated fatty acids, such as ethyl docosahexaenoate (E-DHA), docosahexaenoic acid (DHA), cis-11,14-eicosadienoic acid (EDA) and eicosapentaenoic acid (EPA), were identified from the hexane soluble fraction of Ficus carica. Among them, E-DHA most potently inhibited osteoclastogenesis in RAW264.7 cells. E-DHA reduced the activities of JNK and NF-$\kappa}B$. E-DHA suppressed the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1). Interestingly, DHA increased the activity of alkaline phosphatase and expression of bone morphogenetic protein 2 (BMP2) more than E-DHA in MC3T3-E1 cells, suggesting that DHA may induce osteoblast differentiation. The data suggests that a combination of E-DHA and DHA has potential use in the treatment of diseases involving abnormal bone lysis, such as osteoporosis, rheumatoid arthritis and periodontal bone erosion.

Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts (무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과)

  • He, Mei Tong;Kim, Ji Hyun;Kim, Young Sil;Park, Hye Sook;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • Periodontal inflammation, a major kind of periodontal diseases, is characterized to bleed, pain, and teeth loss, and it is resulted from oxidative stress. Membrane-free stem cell extract could avoid the immunogencity rejection by removal of cell membrane. In the present study, we investigated the protective effect of membrane-free stem cell extract from oxidative stress-induced periodontal inflammation in human periodontal ligament fibroblasts (HPLF). In the cell viability measurement, membrane-free stem cell extract showed significant increase of cell viability, compared with the $H_2O_2$-treated control group. To further investigation of molecular mechanisms, we measured inflammation and apoptosis related protein expressions. Membrane-free stem cell extract attenuated inflammation-related protein expressions such as nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase, and interleukin-6. In addition, the treatment of membrane-free stem cell extract decreased apoptotic protein expressions such as cleaved caspase-9, -3, poly (ADP-ribose) polymerase, and B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio in the $H_2O_2$-treated HPLF cells. In conclusion, membrane-free stem cell extract exhibited anti-oxidative stress effects by regulation of inflammation and apoptosis in HPLF, suggesting that it could be used as the treatment agents for periodontal inflammatory disease.

Inhibitory Effects of Yongbu-tang on Osteoclast Differentiation and Bone Resorption (용부탕의 파골세포 분화 억제와 골 흡수 억제효과)

  • Lee, Jeong Ju;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.27-40
    • /
    • 2015
  • Objectives : This study was performed to evaluate the effects of water extract of Cervi Parvum Cornu(CPC), Aconiti Lateralis Radix Preparata(ALR), and Yongbu-tang(YBT) on suppression of the receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation and bone resorption. Methods : The effects of CPC, ALR, YBT extracts on osteoclast differentiation were determined by culture of bone marrow macrophage(BMM). The mRNA expression levels of the nuclear factor of activated T-cells cytoplasmic 1(NFATc1), c-Fos and tartrate-resistant acid phosphatase(TRAP) in BMMs were analyzed by reverse transcriptase polymerase chain reaction(RT-PCR). Similarly, the protein expression levels of NFATc1, c-Fos, mitogen-activated protein kinase(MAPK)s and ${\beta}$-actin in cell lysates were measured by western blotting. In addition, effects of CPC, ALR and YBT extracts were determined by means of Lipopolysaccharide(LPS)-induced bone-loss with mice. Results : CPC, ALR and YBT extracts showed remarkable inhibition on RANKL-induced osteoclast differentiation without cytotoxicity. CPC and ALR extracts significantly reduced the protein expression level of NFATc1. YBT extract significantly reduced the mRNA expression levels of c-Fos, NFATc1 and the protein expression levels of c-Fos, NFATc1, AKT, p38, c-Jun N-terminal kinase(JNK). Further, YBT extract suppressed degradation of$ I-{\kappa}B$. And ALR extract significantly restored the bone erosion by LPS treatment in mice. Conclusions : YBT extract showed more remarkable inhibition on osteoclast differentiation than CPC and ALR extracts in vitro. ALR extract showed remarkable inhibition on bone resorption in vivo. Thus, YBT extract can be a useful treatment for bone-loss diseases such as osteoporosis.

Silibinin Inhibits Osteoclast Differentiation Mediated by TNF Family Members

  • Kim, Jung Ha;Kim, Kabsun;Jin, Hye Mi;Song, Insun;Youn, Bang Ung;Lee, Junwon;Kim, Nacksung
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of $NF-{\kappa}B$, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit $TNF-{\alpha}$-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and $TNF-{\alpha}$.

Anti-metastatic Effect of Taraxacum Officinale Water and Ethanol Extracts Through the Regulation of Epithelial-Mesenchymal Transition in Huh7 Cells (Huh7 간암세포에서 민들레 추출물의 상피간엽전환 억제를 통한 항전이 효과)

  • Hyun-Seo Yoon;Hyun An;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • Purpose : Epithelial-to-mesenchymal transition (EMT) is recognized as an important cellular response in metastatic proceduresand characterized by loss of cellular polarity as well as gain of mesenchymal features, which enables migration and invasion. Hepatocellular carcinoma (HCC) is one of the most common primary carcinomas in the liver and exhibits a poor prognosis due to frequent extrahepatic metastasis. Taraxacum officinale has been used for a long time in oriental medicine because of its various pharmacological activitiessuch as anti-rheumatic, anti-inflammatory, antioxidative, and anticarcinogenic activities. In this study, the anti-metastatic activity of T. officinale water extract (TOWE) and ethanol extract (TOEE) was investigated through the regulation of EMT in the Huh7 cells. Methods : The effects of TOWE and TOEE on migratory and invasive activities were investigated by wound healing and in vitro invasion assays. Western blot analysis was also applied to analyze protein expression levels associated with EMT and their upstream transcription factors in Huh7 cells. Results : TOWE and TOEE treatment potently inhibited migration and invasion of Huh7 cells compared to the untreated group. Both extracts treatment inhibited protein expression levels of N-cadherin, matrix metalloproteinase (MMP)-9, and vimentin while E-cadherin was significantly accelerated. In addition, the activated status of transcription factors, Snail, nuclear factor (NF)-κ B, and zinc finger E-box binding homeobox (ZEB)1 was also inhibited with statistical significance. In comparison to both extracts, TOEE more potently attenuated migration, invasion, and EMT markers as well as their transcription factors in Huh7 cells than TOWE, which means that TOEE might possess more functional phytochemicals than TOWE. Conclusion : Consequently, TOWE and TOEEattenuated metastatic activity of hepatocellular carcinoma through the regulation of EMT markers and their transcription factors in Huh7 cells, which means that T. officinale might be a promising strategy for a chemopreventive agent against HCC metastasis.