• Title/Summary/Keyword: Nuclear factor erythroid 2-related factor 2 (Nrf2)

Search Result 119, Processing Time 0.028 seconds

Role of Nuclear Factor Erythroid 2-Related Factor 2 in Chronic Obstructive Pulmonary Disease

  • Ban, Woo Ho;Rhee, Chin Kook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.221-226
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation due to chronic airway inflammation and destruction of the alveolar structure from persistent exposure to oxidative stress. The body has various antioxidant mechanisms for efficiently coping with such oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) is a representative system. Dysregulation of the Nrf2-ARE pathway is responsible for the development and promotion of COPD. Furthermore, COPD severity is also closely related to this pathway. There has been a clinical impetus to use Nrf2 for diagnostic and therapeutic purposes. Therefore, in this work, we systematically reviewed the clinical significance of Nrf2 in COPD patients, and discuss the value of Nrf2 as a potential COPD biomarker.

Regulation of Nrf2 Mediated Phase II Enzymes by Luteolin in human Hepatocyte

  • Park, Chung Mu
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.56-61
    • /
    • 2014
  • This study attempted to confirm the antioxidative potential of luteolin against tert-butyl hydroperoxide (t-BHP) induced oxidative damage and to investigate its molecular mechanism related to glutathione (GSH)-dependent enzymes in HepG2 cells. Treatment with luteolin resulted in attenuation of t-BHP induced generation of reactive oxygen species (ROS) and oxidative stress-mediated cell death. In addition, accelerated expression of GSH-dependent antioxidative enzymes, glutathione peroxidase (GPx) and glutathione reductase (GR), and heme oxygenase (HO)-1, as well as strengthened GSH content was induced by treatment with luteolin, which was in accordance with increased nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a transcription factor for phase 2 enzymes, in a dose-dependent manner. These results suggest that the cytoprotective potential of luteolin against oxidative damage can be attributed to fortified GSH-mediated antioxidative pathway and HO-1 expression through regulation of Nrf2 in HepG2 cells.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Hwang, Ji-Young;Ko, Yong-Hyun;Seo, Ji-Yeon;Lee, Bo-Ram;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.268-282
    • /
    • 2016
  • In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$), and their downstream transcription factor, nuclear factor-kappa B ($NF-{\kappa}B$). EUE also blocked the nuclear translocation of $NF-{\kappa}B$ and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and $PGE_2$ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and $GSK-3{\beta}$, consequently suppressing $NF-{\kappa}B$ activation and inducing Nrf2-dependent HO-1 activation.

Study of hepatoprotective effect of Haegan-jeon through activation of nuclear factor erythroid 2-related factor 2 and optimization of herbal composition based on molecular mechanism (Nuclear factor erythroid 2-related factor 2 활성화를 통한 해간전(解肝煎)의 간세포 보호 효능 및 분자기전을 활용한 해간전(解肝煎) 구성 약물의 최적화 연구)

  • Kim, Jae Kwang;Jung, Ji Yun;Park, Sang Mi;Park, Chung A;Ku, Sae Kwang;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.207-221
    • /
    • 2018
  • Objectives : Present study investigated hepatoprotective effect of Haegan-jeon extract (HE) and tried to elucidate molecular mechanism involved. According to molecular mechanism, present study optimized herbal composition of HE (op-HE) and compared in vitro and in vivo hepatoprotective effects of op-HE to HE. Methods : For in vitro experiments, HepG2 cells were exposed to arachidonic acid (AA, $10{\mu}M$) and iron ($5{\mu}M$) for inducing oxidative stress. Cell viability, GSH contents, $H_2O_2$ production, mitochondrial membrane potential, immunoblot and reporter gene assay were performed to investigate cytoprotective effects and responsible molecular mechanisms. For in vivo experiments, hepatoprotective effect of HE and op-HE were assessed on $CCl_4-induced$ liver injury mice model. Results : HE pretreatment prevented AA+iron-mediated hepatocytes apoptosis. In addition, AA+iron-induced mitochondrial dysfunction, $H_2O_2$ production, glutathione depletion were reduced by HE pretreatment. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation, antioxidant response element (ARE)-driven reporter gene activity, and antioxidant genes expression were increased by HE. Based on reporter gene and MTT assays, we found that op-HE consisting three medicinal herbs also significantly increased transactivation of Nrf2 and reduced the AA+iron-mediated cytotoxicity. Moreover, in $CCl_4-induced$ liver injury mice model, HE-op had an ability to ameliorate $CCl_4-mediated$ increases in serum alanine transferase and aspartate aminotransferase activity, hepatic degeneration, inflammatory cell infiltration, and collagen deposition. Hepatoprotective effects of op-HE were comparable to those of HE. Conclusions : Present study suggests that op-HE as well as HE exhibit hepatoprotective effect against oxidative stress-mediated liver injury via Nrf2 activation.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.206-213
    • /
    • 2017
  • BACKGROUN/OBJECTIVES: Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. METHODS/MATERIALS: After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin $F2{\alpha}$ (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. RESULTS: Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly (P < 0.05) lower than those in the HF group without dose-dependent effect. Plasma TBARS concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly (P < 0.05) increased in the HF+BGE 1.0 and HF+BGE 1.5 groups compared to those of the HF group. The mRNA expression levels of hepatic Nrf2, NQO1, HO-1, and GSTA2 were significantly (P < 0.05) increased in the HF with BGE groups compared to those in the HF group. CONCLUSIONS: The improvements of blood glucose homeostasis and antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

NAD(P)H-quinone oxidoreductase-1 silencing modulates cytoprotection related protein expression in cisplatin cytotoxicity

  • Park, Se Ra;Jung, Ju Young;Kim, Young-Jung;Jung, Da Young;Lee, Mee Young;Ryu, Si Yun
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • NAD(P)H-quinone oxidoreductase-1 (NQO1) is a down-stream target gene of nuclear factor erythroid 2-related factor 2 (Nrf2), and performs diverse biological functions. Recently, NQO1 is recognized as an effective gene for the cytotoxic inserts with its diverse biological functions, which is focused on antioxidant properties. The aim of present study was to assess the impact of NQO1 knockdown on cytoprotection-related protein expression in cisplatin cytotoxicity by using small interfering (si) RNA targeted on NQO1 gene. Cytotoxicity of cisplatin on ACHN cells was assessed in a dose- and time-dependent manner after siScramble or siNQO1 treatment. After cisplatin treatment, cells were subjected to cell viability assay, western-blot analysis, and immunofluorescence study. The cell viability was decreased in the siNQO1 cells (50%) than the siScramble cells (70%) after 24 h of cisplatin ($20{\mu}M$) treatment. Moreover, cytoprotection-related protein expressions were markedly suppressed in the siNQO1 cells after cisplatin treatment. The expression of Nrf2 and Klotho were decreased by 20% and 40%, respectively, of that in siScramble cells. Nrf2 and Klotho activation were also decreased in cisplatin treated siNQO1 cells, confirmed by cytoplasm-tonuclear translocation. Our findings demonstrate that the increased cisplatin-induced cytotoxicity was accompanied by suppressed Nrf2 activation and Klotho expression in siNQO1 cells.