• Title/Summary/Keyword: Nuclear applications

Search Result 685, Processing Time 0.024 seconds

A Study on Software Security Vulnerability Detection Using Coding Standard Searching Technique (코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 검출에 관한 연구)

  • Jang, Young-Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.973-983
    • /
    • 2019
  • The importance of information security has been increasingly emphasized at the national, organizational, and individual levels due to the widespread adoption of software applications. High-safety software, which includes embedded software, should run without errors, similar to software used in the airline and nuclear energy sectors. Software development techniques in the above sectors are now being used to improve software security in other fields. Secure coding, in particular, is a concept encompassing defensive programming and is capable of improving software security. In this paper, we propose a software security vulnerability detection method using an improved coding standard searching technique. Public static analysis tools were used to assess software security and to classify the commands that induce vulnerability. Software security can be enhanced by detecting Application Programming Interfaces (APIs) and patterns that can induce vulnerability.

Development and Validation of MARS-KS Input Model for SBLOCA Using PHWR Test Facility (중수로 실증 실험설비를 이용한 소형냉각재상실사고의 MARS-KS 입력모델 개발 및 검증계산)

  • Baek, Kyung Lok;Yu, Seon Oh
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2021
  • Multi-dimensional analysis of reactor safety-KINS standard (MARS-KS) is a thermal-hydraulic code to simulate multiple design basis accidents in reactors. The code has been essential to assess nuclear safety, but has mainly focused on light water reactors, which are in the majority in South Korea. Few previous studies considered pressurized heavy water reactor (PHWR) applications. To verify the code applicability for PHWRs, it is necessary to develop MARS-KS input decks under various transient conditions. This study proposes an input model to simulate small-break loss of coolant accidents for PHWRs. The input model includes major equipment and experimental conditions for test B9802. Calculation results for selected variables during steady-state closely follow test data within ±4%. We adopted the Henry-Fauske model to simulate break flow, with coefficients having similar trends to integrated break mass and trip time for the power supply. Transient calculation results for major thermal-hydraulic factors showed good agreement with experimental data, but further study is required to analyze heat transfer and void condensation inside steam generator u-tubes.

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali;Akbas, Seref D.;Eltaher, Mohamed A.;Assie, Amr
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

Detection and Analysis of Discharge Pulses by Failure Mechanisms of the Separator inside Lithium-Ion Batteries (리튬이온 배터리의 분리막 손상 요인별 방전펄스의 검출과 분석)

  • Lim, Seung-Hyun;Lee, Gyeong-Yeol;Kim, Nam-Hoon;Kim, Dong-Eon;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.327-332
    • /
    • 2021
  • Lithium-ion batteries (LIBs) have become a main energy storage device in various applications, such as portable appliances, renewable energy facilities, and electric vehicles. However, the poor thermal stability of LIBs may cause explosion or fire. The thermal runaway is the result of a failure of the separator inside LIB. Damages like tearing, piercing, and collapsing of the separator were simulated in a mechanical, an electrical, and a thermal way, and small discharge pulses of a few mV were detected at the time of separator damages. From the experimental results, this paper provided a method that can identify the separator failure before thermal runaway in the aspect of a potential explosion and fire prevention measures.

Thermomechanical behavior of Macro and Nano FGM sandwich plates

  • Soumia, Benguediab;Tayeb, Kebir;Fatima Zohra, Kettaf;Ahmed Amine, Daikh;Abdelouahed, Tounsi;Mohamed, Benguediab;Mohamed A., Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.83-106
    • /
    • 2023
  • In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading. Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of the current model is using a new displacement field with four variables and a warping function considering the effect of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical solution is obtained by using Navier method. The model is verified with previous published works by other models and very close results are obtained within maximum 1% deviation. The numerical results are performed to present the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil and mechanical applications.

Analysis of Gamma Radiation Effects of Commercial Radiation-Resistant Optical Fibers (내방사 광섬유의 감마선 영향 분석)

  • Ryu, Gukbeen;Kim, Young-Woong;Kim, Jong-Yeol;Hwang, Young Gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.620-622
    • /
    • 2022
  • When an optical fiber is exposed to radiation, a color center is formed in the core, which lowers the optical transmittance of the optical fiber. This is called the radiation-induced attenuation(RIA), and research on optical fibers having improved radiation resistance by changing materials and structures is being actively conducted. This is because radiation-resistant optical fibers have the advantage that they can be used in telecommunication and optical applications even in extreme environments such as space and nuclear power plants. In this paper, the effect of gamma irradiation of commercial radiation-resistant optical fibers was analyzed.

  • PDF

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474

  • Ji Yeon Lee;Jeong‐Yong Park;Yulah Jeong;Chang‐Ho Kang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1039-1049
    • /
    • 2023
  • Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.

The role of cytogenetic tools in orchid breeding

  • Samantha Sevilleno Sevilleno;Raisa Aone Cabahug-Braza;Hye Ryun An;Ki‑Byung Lim;YoonJung Hwang
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.193-206
    • /
    • 2023
  • Orchidaceae species account for one-tenth of all angiosperms including more than 30,000 species having significant ecological, evolutionary, and economic importance. Despite Orchidaceae being one of the largest families among flowering plants, crucial cytogenetic information for studying species diversification, inferring phylogenetic relationships, and designing efficient breeding strategies is lacking, except for 10% or less of orchid species cases involving mostly chromosome number or karyotype analysis. Also, only approximately 1.5% of the identified orchid species from less than a hundred genera have genome size data that provide crucial information for breeders and molecular geneticists. Various molecular cytogenetic techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), have been developed for determining ploidy levels, analyzing karyotypes, and evaluating hybridity, in several ornamental crops including orchids. The estimation of genome size and the determination of nuclear DNA content using flow cytometry have also been employed in some Orchidaceae subfamilies. These different techniques have played an important role in supplementing beneficial knowledge for effective plant breeding programs and other related plant research. This review focused on orchid breeding summarizes the status of current cytogenetic tools in terms of background, advancements, different techniques, significant findings, and research challenges. Principal roles and applications of cytogenetics in orchid breeding as well as different ploidy level determination methods crucial for breeding are also discussed.

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho;Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-277
    • /
    • 2024
  • Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.