• Title/Summary/Keyword: Nuclear Waste Policy

Search Result 59, Processing Time 0.022 seconds

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study

  • Ryu, Je Ir;Woo, Seung Min;Lee, Manseok;Yoon, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.130-137
    • /
    • 2022
  • In the geological repository of radioactive nuclear waste, anaerobic corrosion can generate hydrogen, and may conservatively lead to the production of hydrogen-air layer. The accumulated hydrogen may cause a hazardous flame propagation resulting from any potential ignition sources. This study numerically investigates the processes of ignition and flame propagation in the layered mixture. Simple geometry was chosen to represent the geological repository, and reactive flow simulations were performed with different ignition power, energy, and locations. The simulation results revealed the effects of power and energy of ignition source, which were also analyzed theoretically. The mechanism of layered flame propagation was suggested, which includes three stages: propagation into the hydrogen area, downward propagation due to the product gas, and horizontal propagation along the top wall. To investigate the effect of the ignition source location, simulations with eight different positions were performed, and the boundary of hazardous ignition area was identified. The simulation results were also explained through scaling analysis. This study evaluates the potential risk of the accumulated hydrogen in geological repository, and illustrates the layered flame propagation in related ignition scenarios.

Measuring Nuclear Power Plant Negative Externalities through the Life Satisfaction Approach: The Case of Ulsan City

  • LEE, KYE WOO;YOO, SE JONG
    • KDI Journal of Economic Policy
    • /
    • v.40 no.1
    • /
    • pp.67-83
    • /
    • 2018
  • We have hypothesized that nuclear risk is significantly inversely related to the distance from residences to nuclear power plants and that the level of life satisfaction of residents therefore increases with the distance. We empirically explore the relationship between Ulsan citizens' life satisfaction levels and the distance between their residences and the Kori and Wolsong nuclear power plants (NPP) based on the life satisfaction approach (LSA). The dataset we used covers only Ulsan citizens from the biennial Ulsan Statistics on Citizen's Living Condition and Consciousness of 2014 and 2016. Controlling for micro-variables such as education, work satisfaction, gender, marital status, and expenditures, we found a statistically significant relationship between life satisfaction and the distance between the residences and the nuclear power plants. Nuclear negative externalities including (i) health and environmental impact, (ii) radioactive waste disposal, and (iii) the effect of severe accidents can be quantified in terms of LS units and monetary units. We were able to calculate the monetary value of NPP externalities at $277 per kilometer of distance for Kori and $280 per kilometer of distance for Wolsong at constant 2015 prices. These estimates are quite different from the traditional estimates made with the contingent valuation method, whereas they are similar to the findings of LSA studies abroad. Hence, the need to adopt the LSA in South Korea and policy implications are demonstrated.

Suggestion of Efficient High Dose Spent Filter Handling and Compaction Equipment

  • Lee, Kyungho;Chung, Sewon;Park, Seonghee;Kim, HuiGyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.243-253
    • /
    • 2022
  • Spent filters with a high radiation dose rate of 2 mSv·hr-1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.

A Study on Applicability of French Legislative Approach for Radioactive Waste Management (프랑스 방사성폐기물 관리 법제화 사례의 적용성 연구)

  • Noh, Hyunyub;Lee, Keon Hee;Kim, Jong-Bin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.219-227
    • /
    • 2015
  • Radioactive waste processing and disposal is a major problem that needs to be fully addressed by countries that use nuclear power. In recent years, only a few countries have made substantial progress on this issue, and the French stepwise legislative approach on radioactive waste management is evaluated as a successful case. For South Korea, it is still necessary to prepare an adequate national policy for dealing with radioactive waste so the French model has been suggested as a direction of policy making in Korea. Based on comparisons of technical status and sociopolitical indexes in both countries, then this study suggests that the French legislative model is a valid one which may be applicable to the Korean context, especially in relation to resource recycling and social acceptance enhancement strategies.

Challenges in nuclear energy adoption: Why nuclear energy newcomer countries put nuclear power programs on hold?

  • Philseo Kim;Hanna Yasmine;Man-Sung Yim;Sunil S. Chirayath
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1234-1243
    • /
    • 2024
  • The pressing need to mitigate greenhouse gas emissions has stimulated a renewed interest in nuclear energy worldwide. However, while numerous countries have shown interest in nuclear power over the course of history, many of them have not continued their pursuit and chosen to defer or abandon their peaceful nuclear power projects. Scrapping a national nuclear power program after making initial efforts implies significant challenges in such a course or a waste of national resources. Therefore, this study aims to identify the crucial factors that influence a country's decision to terminate or hold off its peaceful nuclear power programs. Our empirical analyses demonstrate that major nuclear accidents and leadership changes are significant factors that lead countries to terminate or defer their nuclear power programs. Additionally, we highlight that domestic politics (democracy), lack of military alliance with major nuclear suppliers, low electricity demand, and national energy security environments (energy import, crude oil price) can hamper a country's possibility of regaining interest in a nuclear power program after it has been scrapped, suspended, or deferred. The findings of this study have significant implications for policymakers and stakeholders in the energy sector as they strive to balance the competing demands of energy security, and environmental sustainability.

Framing an Issue of Building a Nuclear Waste Site on Television News (핵폐기장 유치에 대한 텔레비전 뉴스 프레임 분석 -KBS, MBC의 전국 및 지역(전북지역) 뉴스를 중심으로-)

  • Na, Mi-Su
    • Korean journal of communication and information
    • /
    • v.26
    • /
    • pp.157-208
    • /
    • 2004
  • This study explored how television news constructed an issue of the building of a nuclear waste facility on Wido, an issue which displayed a social conflict in the latter half of the year 2003. To do this, this study conducted frame analysis on KBS and MBC main news including national and local ones, broadcasted from 11 July, 2003 to 10 December, 2003. It was found that television news tended to stress violent protests against site designation and social disorder rather than the causes of a conflict and its solutions. Therefore, news reporting excluded fundamental reasons of conflict such as the governmental decision-making process of site designation, geological suitability, safety issue and nuclear energy policy, emphasizing the confrontation and clash between pro and con groups of site designation. This indicates that television news defines an issue of the building of a nuclear waste facility as the local conflict between groups, the police and demonstrators, or neighbors who approve and protest the site designation, not as the national issue of nuclear policy.

  • PDF

Multilateral Nuclear Approaches (MNAs), Factors and Issues Lessons from IAEA Study to Regional Cooperation (다자간 원자력 협력: 요소와 현안)

  • Hwang Yong-Soo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.56-66
    • /
    • 2005
  • In response to the increasing emphasis being placed on the importance of international cooperation as part of global efforts to cope with growing non proliferation, and security, concerns in the nuclear field, the Director General of the International Atomic Energy Agency (IAEA), Mohamed ElBaradei, appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The mandate of the Expert Group was three fold: ${\bullet}$ To identify and provide an analysis of issues and options relevant to multilateral approaches to the front and back ends of the nuclear fuel cycle; ${\bullet}$ To provide an overview of the policy, legal, security, economic, institutional and technological incentives and disincentives for cooperation in multilateral arrangements for the front and back ends of the nuclear fuel cycle; and ${\bullet}$ To provide a brief review of the historical and current experiences and analyses relating to multilateral fuel cycle arrangements relevant to the work of the Expert Group. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. The Group identifies options for MNAs - options in terms of policy, institutional and legal factors - for those parts of the nuclear fuel cycle of greatest sensitivity from the point of view of proliferation risk. It also reflects the Groups deliberations on the corresponding benefits and disadvantages (pros and cons) of the various options and approaches. Although the Expert Group was able to agree to forward the resulting report to the Director General, it is important to note that the report does not reflect agreement by all of the experts on any of the options, nor a consensus assessment of their respective value. It is intended only to present options for MNAs, and to reflect on the range of considerations which could impact on the desirability and feasibility of those options.

  • PDF

Considerations for the Successful Verification and Dismantlement of North Korea's Nuclear Program (북핵 프로그램의 성공적 검증.폐기를 위한 고려사항)

  • Moon, Joo-Hyun;Park, Byung-Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.143-151
    • /
    • 2009
  • Due to a more favorable climate in the recent relationship between U.S. and North Korea, North Korea nuclear issue is expected to enter the new phase of nuclear verification. From now on, our government should make preparation for taking the appropriate steps against the situation developed after the declaration by North Korea. Therefore, this paper is to identify the problems that may be occurred in the process of verifying and dismantling North Korea's nuclear program and to suggest the policy considerations that should be incorporated in establishing the action plan for verifying and dismantling her nuclear program, based on the analysis of experiences to verify and dismantle the WMDs in the former Soviet Union and in Iraq, respectively.

  • PDF

U.S. Policy and Current Practices for Blending Low-Level Radioactive Waste for Disposal (저준위 방사성폐기물의 혼합 관련 미국의 정책과 실제 적용)

  • Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.235-243
    • /
    • 2016
  • In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented.