• 제목/요약/키워드: Nuclear Structural Materials

검색결과 234건 처리시간 0.029초

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.

원자력발전소 적용 고밀도 폴리에틸렌 배관의 맞대기 융착절차 및 검증절차 분석 (Butt-fusing Procedures and Qualifications of High Density Polyethylene Pipe for Nuclear Power Plant Application)

  • 오영진;박흥배;신호상
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.1-7
    • /
    • 2013
  • In nuclear power plants, lined carbon steel pipes or PCCPs (pre-stressed concrete cylinder pipes) have been widely used for sea water transport systems. However, de-bonding of linings and oxidation of PCCP could make problems in aged NPPs (nuclear power plants). Recently at several NPPs in the United States, the PCCPs or lined carbon steel pipes of the sea water or raw water system have been replaced with HDPE (high density polyethylene) pipes, which have outstanding resistance to oxidation and seismic loading. ASME B&PV Code committee developed Code Case N-755, which describes rules for the construction of buried Safety Class 3 polyethylene pressure piping systems. Although US NRC permitted HDPE materials for Class 3 buried piping, their permission was limited to only 10-year operation because of several concerns including the quality of fusion zone of HDPE. In this study, various requirements for fusion qualification test of HDPE and some regulatory issues raised during HDPE application review in foreign NPPs are introduced.

STRESS CORROSION CRACKING PROPERTIES OF STEAM GENERATOR TUBING ALLOYS IN CREVICE ENVIRONMENT

  • JUNG-HO SHIN;DONG-JIN KIM
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.543-545
    • /
    • 2019
  • The safe and reliable operation of pressurized water reactors (PWRs) depends on the integrity of structural material. In particular, the failure of steam generator (SG) tubes on the secondary side is one of the major concerns of operating nuclear power plants. To establish remediation techniques and manage damage, it is necessary to articulate the mechanism through which various impurities affect the SG tubes. This research aims to understand the effect of impurities (e.g., S, Pb, and Cl) on the stress corrosion cracking of Alloy 600 and 690.

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility

  • Cheong, Yong-Moo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1463-1471
    • /
    • 2017
  • In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.

Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials

  • Kim, In Yea;Shin, Seo Yoon;Ko, Jea Hwan;Lee, Kang Soo;Woo, Sung Pil;Kim, Dong Kyu;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제54권1호
    • /
    • pp.9-22
    • /
    • 2017
  • Many new functional materials have been studied for efficient production and storage of energy. Many new materials such as sodium-based and sulfide-based materials have been proposed for energy storage, but research on Li batteries is still dominant. Due to the influence of environmental concerns regarding nuclear energy, interest in and research on fusion power are steadily increasing. For the commercialization of nuclear fusion, a design standard based on a considerable level of physical analysis and modeling is proposed. Nevertheless, limitations of existing materials in nuclear fusion environments limit practical applications. Tritium propagation material for continuous fusion reaction is one of the core materials, and therefore research on this material is being carried out intermittently. The key material for Li-based energy storage and tritium generation is the functional material Li-M-O. In this review, a structural description of functional Li-M-O system materials and technical trends for its applications are introduced.

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ODS FERRITIC STAINLESS STEELS FOR HIGH TEMPERATURE SERVICE APPLICATIONS

  • SANGHOON NOH;SUK HOON KANG;TAE KYU KIM
    • Archives of Metallurgy and Materials
    • /
    • 제64권3호
    • /
    • pp.921-924
    • /
    • 2019
  • In this study, ODS ferritic stainless steels were fabricated using a commercial alloy powder, and their microstructures and mechanical properties were studied to develop the advanced structural materials for high temperature service applications. Mechanical alloying and uniaxial hot pressing processes were employed to produce the ODS ferritic stainless steels. It was revealed that oxide particles in the ODS stainless steels were composed of Y-Si-O, Y-Ti-Si-O, and Y-Hf-Si-O complex oxides were observed depending on minor alloying elements, Ti and Hf. The ODS ferritic stainless steel with a Hf addition presented ultra-fine grains with uniform distributions of fine complex oxide particles which located in grains and on the grain boundaries. These favorable microstructures led to superior tensile properties than commercial stainless steel and ODS ferritic steel with Ti addition at elevated temperature.

Analyzing local perceptions toward the new nuclear research reactor in Thailand

  • Tantitaechochart, Sarasinee;Paoprasert, Naraphorn;Silva, Kampanart
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2958-2968
    • /
    • 2020
  • Understanding public perception on nuclear research reactor is necessary for the policy maker to adopt such technology in Thailand, especially the locals who live in the proposed location. The study compared perceptions between the locals living near the proposed nuclear research reactor location (within 5 km) and those living in the outer region (5-15 km). Structural equation modeling technique was adopted by assuming casual relationships between latent variables including social status, information perception, trust, benefit perception and risk perception on the local acceptance of research reactor. The results showed that the strongest relationships for both the inner and the outer perimeters were from information perception toward technology acceptance via trust and benefit perception. While both zones showed similar results, the outer perimeter seemed to show slightly stronger effects than those in the inner perimeter.

탄소강의 유동가속부식에 미치는 크롬의 영향 (Effect of Cr on Flow Accelerated Corrosion of Carbon Steel)

  • 이은희;김경모;김홍표;김동진
    • Corrosion Science and Technology
    • /
    • 제14권1호
    • /
    • pp.25-32
    • /
    • 2015
  • The alloy content of structural materials of nuclear power plants has been recognized an important factor in predicting flow accelerated corrosion (FAC). In particular, many literature data reported that chromium content is one of the most important alloying element and even a small amount of chromium is effective to suppress FAC. This report reviewed and compared chromium models of Ducreux, Bouchacourt, and Kastner which were used in predicting FAC rates. The plant data indicate that Ducreux model may be conservative for the specimen containing 0.15 wt% chromium. The related articles were reviewed as follows. Combined effects of chromium content, pH, temperature, dissolved oxygen (DO), flow velocity, test time, and kinds of amine on the FAC rate were described. 0.1 wt% chromium in steel did not affect the FAC rate with changes in pH. The FAC rates pronounced with higher flow rate and increased with increasing test duration(600 d) for 0.013 wt% chromium. The FAC rates in mixed amine chemistry were higher than in ammonia chemistry, which may be lessened by the addition of chromium to the steel.

Order-disorder structural tailoring and its effects on the chemical stability of (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic for nuclear waste forms

  • Wang, Yan;Wang, Jin;Zhang, Xue;Li, Nan;Wang, Junxia;Liang, Xiaofeng
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2427-2434
    • /
    • 2022
  • Series of unequal quantity Nd/Ce co-doped ceramic nuclear waste forms, (Gd, Nd)2(Zr, Ce)2O7, were prepared to tailor its ordered pyrochlore or disordered fluorite structure. The phase transition, microtopography, and elemental composition of the ceramic samples were systematically investigated, especially the effect of order-disorder structure on the chemical stability. It was confirmed that unequal quantity of Nd/Ce could synchronously replace the Gd/Zr-sites of Gd2Zr2O7. And the phase transition of order-disorder structure could be successfully tailored by regulating the average cationic radius ratio of (Gd, Nd)2(Zr, Ce)2O7 series. The elements of Gd, Nd, Zr, and Ce are uniformly distributed in the ordered or disordered structures. The MCC-1 leaching results showed that (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic nuclear waste forms had excellent chemical stability, whose elements' normalized leaching rates were as low as 10-4-10-7 g·m-2·d-1 after 7 days. In particular, the chemical stability of disordered structure was superior to that of ordered structure. It was proposed that the force constant and the closest packing were changed with the structure transformation resulting the chemical stability difference.