• Title/Summary/Keyword: Nuclear Safety law

Search Result 59, Processing Time 0.025 seconds

Risk Assessment of 30 MeV Cyclotron Facilities (30 MeV 사이클로트론 시설 위험성 평가)

  • Jeong, Gyo-Seong;Kim, Chong-Yeal;Lee, Jin-Woo
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce $^{18}F$, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fires and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a fire. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.

The legitimacy and directions of legislation for the protection of citizens against nuclear, biological and or chemical attack under war conditions (전시 화생방위험으로부터 국민을 보호하기 위한 법제정 정당성 및 입법방향)

  • Baek, Oksun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.294-303
    • /
    • 2014
  • The state has the constitutional duty to secure the safety of its citizens and provide protection against any physical dangers. The Republic of Korea has a high threat of nuclear, biological and or chemical(hereafter referred to as NBC) attack from the Democratic People's Republic of Korea. Thus, the state has a responsibility to form a legislation to provide the protection for its citizens and implement duty to guarantee the human rights. Under the current legislation, the 'United Defense Act', 'Framework Act on Civil Defense' that are applied under wartime conditions are insufficient in providing the protection of the citizens of the state in the occurrence of NBC attack. Therefore, it is necessary that the 'Act for the Protection of Citizens in the occurrence of NBC Attack' is legislated to provide a system that protects the nation's citizens under the wartime conditions mentioned above. This paper incorporates a theoretical analysis of the need for the constitutional responsibility of the state to provide protection for its citizens under wartime conditions, the necessity of a specific measure to protect citizens during NBC attack, the relationship between 'Act for the Protection of Citizens in the occurrence of Nuclear, Chemical and or Biological Attack' and current legislations that are applied under wartime conditions, and the particulars of the proposed act.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

Canadian Public and Stakeholder Engagement Approach to a Spent Nuclear Fuel Management (사용후핵연료 관리를 위한 캐나다 공론화 방안)

  • Hwang, Yong-Soo;Kim, Youn-Ok;Whang, Joo-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • After Canada has struggled with a radioactive waste problem over for 20 years, the Canadian government finally found out that its approach by far has been lack of social acceptance, and needed a program such as public and stakeholder engagement (PSE) which involves the public in decision-making process. Therefore, the government made a special law, called Nuclear Fuel Waste Act (NFWA), to search for an appropriate nuclear waste management approach. NFWA laid out three possible approaches which were already prepared in advance by a nuclear expert group, and required Nuclear Waste Management Organization (NWMO) to be established to report a recommendation as to which of the proposed approaches should be adopted. However, NFWA allowed NWMO to consider additional management approach if the other three were not acceptable enough. Thus, NWMO studied and created a fourth management approach after it had undertaken an comparison of the benefits, risks and costs of each management approach: Adaptive Phased Management. This approach was intended to enable the implementers to accept any technological advancement or changes even in the middle of the implementation of the plan. The Canadian PSE case well shows that technological R&D are deeply connected with social acceptance. Even though the developments and technological advancement are carried out by the scientists and experts, but it is important to collect the public opinion by involving them to the decision-making process in order to achieve objective validity on the R&D programs. Moreover, in an effort to ensure the principles such as fairness, public health and safety, security, and adoptability, NWMO tried to make those abstract ideas more specific and help the public understand the meaning of each concept more in detail. Also, they utilized a variety of communication methods from face-to-face meeting to e-dialogue to encourage people to participate in the program as much as possible. Given the fact that Korea has been also having a hard time in dealing with spent nuclear fuel management, all of these efforts that Canada has made with a PSE program would give good lessons and implications to the Korean case. In conclusion, as a deliberative participation program, PSE could be a possible breakthrough approach for the Korean spent nuclear fuel management.

  • PDF

Flaw Discrimination for Welding Points in Boiler Tubes by Phased Array Ultrasonic Testing (위상배열초음파탐상검사에 의한 보일러관 용접부의 결함 판별)

  • Cho, Kuk-Hyung;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.45-50
    • /
    • 2018
  • Nuclear safety law's amendment caused many problems to use radiography testing(RT). Phased array ultrasonic testing(PAUT) was adapted instead of RT for NDE of welding points in boiler tubes these days. Unfortunately, PAUT doesn't give us the discrimination characteristics about flaws distinction and flaws size clearly. In this thesis, the distinction characteristics of flaw types and the detection characteristics of flaw size using PAUT of welding points in boiler tubes were analyzed. It was concluded that PAUT can distinguish between planar flaws and rounded flaws, but it is hard to tell apart the types of flaw respectively. We paid attention to the discrimination of flaws size because PAUT tends to underestimate the flaw size of porosity and underestimate or overestimate the flaw size of porosity.

  • PDF

Development of a Medical Radiation Simulator System for Education and Proposal of a Research Model (교육용 의료방사선 시뮬레이터 시스템 개발 및 연구 모델 제안)

  • Chang-Hwa Han;Young-Hwang Jeon;Jae-Bok Han;Chang-gi Kong;Jong-Nam Song
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.459-464
    • /
    • 2023
  • Due to the development of advanced technology, a lot of digital radiographic equipment has been developed, which is very helpful for accurate diagnosis and treatment, and it is very important to train personnel who have acquired professional knowledge in order to use it safely and effectively. Students are exposed to the risk of radiation exposure in radiography training using diagnostic X-ray equipment, and some educational institutions do not use X-ray equipment due to management difficulties in accordance with the Nuclear Safety Act. As a solution to this, this study developed a medical radiation simulator for education that does not generate radiation by using a vision sensor and self-developed software. Through this, educational institutions can reduce the burden of administrative implementation according to the law, and students can obtain a high level of educational effects in a healthy practice environment without radiation exposure.

Investigations of the External Dose Rate (${\mu}Sv/h$), the Residual Activity (mCi) and the Excretion Rate (%) of Thyroid Cancer Patients Hospitalized for 3700 MBq (100 mCi) $^{131}I$ Radioiodine Treatment ($^{131}I$ 3700 MBq (100 mCi) Therapy 입원 환자의 선량률(${\mu}Sv/h$), 잔류량(mCi), 배설률(%) 측정)

  • Bae, Gi-Han;Kim, Hwa-Joong;Choi, Jae-Jin;Lee, Won-Guk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 2009
  • Purpose: As Korean nuclear law doesn't have any clear guideline about the dose and the external dose rate(uSv/h) requiring hospitalization in radioactive iodine treated patients, the patients are discharged when they meet the guideline of IAEA Basic Safety Standards(BSS). We measured external dose rate(${\mu}Sv/h$) of inpatient underwent 3700MBq (100 mCi) $^{131}I$ radioiodine treatment and considering external dose rate(${\mu}Sv/h$), residual activity(mCi) and excretion rate(%) we found the time for RA to be lowered from 3700MBq (100 mCi) to 1110 MBq (30 mCi) to give reference to set a guideline for discharge. Materials and Methods: Forty-two patients underwent thyroidectomy and scheduled for radioiodine treatment, who received 3700MBq (100 mCi) of $^{131}I$ orally and had no renal disease were examined. After 1, 2, 4, 8, and 20, 24, 40 hours iodine uptake and before/after the urination, the external dose rate(${\mu}Sv/h$) measured using FH40G-L(Thermo Fisher Scientific Inc., MA) at a distance and a height of 1 m for 20 sec on the average. Results and Conclusions: At 20 hours, the external dose rate was decreased to $49{\pm}13\;{\mu}Sv$/h, namely, 78% of administrated radioactivity was excreted and 814 MBq (30 mCi) was residual, and it met the accepted limit for discharge of (IAEA, BSS) under 1110 MBq (30 mCi) (1 m at 66 uSv/h).

  • PDF

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.