• Title/Summary/Keyword: Nuclear Reaction

Search Result 1,000, Processing Time 0.035 seconds

The Reaction of 4,4′-Dihydroxydiphenyl Methane with Glycidyl Methacrylate

  • Pyun, Hyung-Chick;Park, Wan-Bin;Sung, Ki-Woung;Choi, Kyu-Suck
    • Nuclear Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 1979
  • The reaction of 4,4'-dihydroxydiphenl methane (4,4'-DPM) with glycidyl methacrylate (GMA) catalyzed by triethylbenzyl ammonium chloride (TEBAC) has been studied for the purpose of synthesis of electron beam curable prepolymer. The reaction was in good agreement with third-order kinetics. according to -d[GMA]/dt=k[TEBAC][DPM][GMA] and the apparent activation energy was about 33.4kca1/mole. However, the reaction rates were increased if tile reaction proceeded after the mixtures exposed to air for 24 hrs at room temperature. The effects of the catalyst and the difference in the reactivity between 2.2'-DPM to GMA were discussed. The plausible reaction mechanism was proposed on basis of experimental data obtained.

  • PDF

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M.;Margulis, Marat;Read, Nathaniel;Shwageraus, Eugene;Petrovic, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.817-825
    • /
    • 2022
  • A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.

Analysis of Proton Nuclear Reaction-Generated Nuclides for Different Proton Energy (양성자 에너지 변화에 따른 핵반응 생성핵종 분석)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.819-824
    • /
    • 2019
  • In this study, we proposed a method for identifying isotopes generated from high-energy proton $^{nat}Pb$(p,xn) nuclear reactions through the difference of gamma rays generated through nuclear reactions using different proton energies. The experiment was performed by using a high energy proton generated from a 100 MeV proton linear accelerator of the Korea Atomic Energy Research Institute. Gamma rays generated by various nuclides generated through proton nuclear reactions were measured using a gamma-ray spectroscopy system composed of HPGe detectors. Gamma-ray standard sources were used for accurate energy calibration and efficiency measurements of HPGe gamma-ray detectors. For the proposed method, 100 and 60 MeV proton energy beams were used for the same natural lead samples. This method was found to be very effective in identifying nuclides produced by comparing gamma rays generated from the same sample with each other. The results of this study are expected to be very effective in obtaining other proton nuclear reaction results in the future.