• Title/Summary/Keyword: Nuclear Power Plant

Search Result 3,309, Processing Time 0.032 seconds

The Cognitive and Economic Value of a Nuclear Power Plant in Korea

  • Lim, Gil-Hwan;Jung, Woo-Jin;Kim, Tae-Hwan;Lee, Sang-Yong Tom
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.609-620
    • /
    • 2017
  • We studied the value of a nuclear power plant by considering Koreans' willingness to pay (WTP) for neutralizing the various problems caused by building and operating a new plant. For this, we used a conjoint analysis and ordered logistic regression. We then compared the WTP estimates between various segment groups. The results revealed that each household was willing to pay an additional 99,677 Korean Won (KRW)/mo on average to resolve the negative impacts from a nuclear plant. Therefore, the yearly cognitive and economic value of a nuclear plant in Korea was about 19 trillion KRW. Through a segment analysis, we found that the more educated, younger, and poorer groups gave higher cognitive values than the less educated, older, and richer groups, respectively. Also, people who lived far from a plant gave higher values than people living near a plant, and people with more knowledge about or interest in nuclear energy gave higher values than people with less knowledge or interest. People who felt that nuclear energy is necessary gave higher values to nuclear energy than those who did not. Our results can be used as bases to set targets for promoting nuclear energy and pursuing a national project of building a nuclear power plant.

Analysis of Battery Performance Test for DC Power System in Nuclear Power Plant (원자력발전소 직류전원계통용 축전지 성능시험 분석)

  • Kim, Daesik;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Function of battery bank stores energy for DC load in general, and DC power system of the nuclear power plant is used to supply DC loads for safety- featured instrumentation and control such as inverter, class 1E power system control and indication, and station annunciation. Class 1E DC power system must provide a power for the design basis accident conditions, and adequate capacity must be available during loss of AC power and subsequent safe shutdown of the plant. In present, batteries of Class 1E DC power system of the nuclear power plant uses lead-acid batteries. Class 1E batteries of nuclear power plants in Korea are summarized in terms of specification, such as capacity, discharge rate, bank configuration and discharge end voltage, etc. This paper summarizes standards of determining battery size for the nuclear power plant, and analyzes duty cycle for the class 1E DC power system of nuclear power plant. Then, battery cell size is calculated as 2613Ah according to the standard. In addition, this paper analyzes performance test results during past 13 years and shows performance degradation in the battery bank. Performance tests in 2001 and 2005 represent that entire battery cells do not reach the discharge-end voltage. Howeyer, the discharge-end voltage is reached in 14.7% of channel A (17 EA), 13.8% of channel B (16 EA), 5.2% of channel C (6 EA) and 16.4% of channel D (19 EA) at 2011 performance test. Based on the performance test results analysis and size calculation, battery capacity and degradation by age in Korearn nuclear power plant is discussed and would be used for new design.

Development of Maintenance Effectiveness Monitoring Program based on Design Characteristics for New Nuclear Power Plant (신규원전의 설계특성 기반 정비효과성감시 프로그램 개발)

  • Yeom, Dong-Un;Hyun, Jin-Woo;Song, Tae-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2012
  • Korea Hydro & Nuclear Power Co. (KHNP) has developed and implemented the maintenance effectiveness monitoring (MR) programs for the operating nuclear power plants. The MR program is developed by reflecting design characteristics of the operating nuclear power plants to monitor the plant performance for improving the safety and reliability. Recently, KHNP has built a new nuclear power plant, and developed the MR program to establish the advanced maintenance system by reflecting unique design characteristics based on the OPR1000 standard model. So, the MR program developed in this study has another characteristics in comparison with the OPR1000 standard model, and we will verify the suitability of the MR program through evaluating initial performance of the plant. The safety and reliability of the new plant will be improved by developing and implementing the MR program.

The Radiobiological Evaluation on Abnormal Delivery of Cattle around Nuclear Power Plant using Micronucleus Assay in Lymphocyte (림프구 미소핵 측정법을 이용한 원자력발전소 주변 소의 이상산에 대한 방사선 생물학적 평가)

  • 김세라;김성호
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.364-368
    • /
    • 2003
  • Cytogenetic and hematological analysis was performed in peripheral blood from the cattle associated with abnormal delivery around nuclear power plant area. The frequency of micronuclei (MN) in peripheral blood lymphocytes from cattle was used as a biomarker of radiobiological effects resulting from exposure to environmental radiation. An estimated dose of radiation was calculated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 Gy to 4 Gy from the bovine lymphocytes with in vitro irradiation. MN rates in live malformed calf, dams of malformed calves and other cattle living in the same barn from the regions around nuclear power plant, and cattle in control area were 9/1000, 10.8/1000, 13.3/1000 and 10.0/1000, respectively. There were no significant differences in MN frequencies and hematological values between the cattle associated with abnormal delivery around nuclear power plant area and those of control area. This study indicates that the congenital abnormalities near nuclear power plant seemed to be caused by other aetiology.

Development of Ultrasonic Sensor for Engine Condition Diagnosis of EDG (비상디젤발전기 엔진 상태진단 초음파 탐촉자 개발)

  • Lee, Sang-Guk;Choi, Kwang-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.31-35
    • /
    • 2013
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear power plant at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite standby diesel generator should be ensured by a condition monitoring system designed to maintain, monitor and forecast the reliability level of diesel generator. The purpose of this paper is to improve the existing ultrasonic sensor used for condition diagnosis of engine fuel pump and cylinder head for the accurate diagnosis in actual engine condition of emergency diesel generator(EDG). As a result of this study, we could design and develop much more reliable ultrasonic sensor than existing ones.

Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.;Park, J.E.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Development and Application of Integrated Management System in Nuclear Power Plant Construction Project

  • Lee, Sang Hyun;Byon, Su Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.700-701
    • /
    • 2015
  • Nuclear power plant construction project can be called essential to establish a systematic project management system compared to other construction projects, taking into account the size and complexity and safety. To develop into a project management system for the Korea situation with the ongoing construction of the nuclear power plant was directed to promote nuclear power project management. In this paper, we introduce a comprehensive project management system for nuclear power projects. Currently considering the nuclear life cycle design, construction, and was developed by considering the flow of information to operate, and test each step linkage. The systems in English were developed to meet owner's requirements for advancing into overseas projects. Another point is that the systems were developed by management module, so that functions of each area can be selectively applied. It is expected that the system will establish itself as one that can be used for the entire lifecycle of nuclear power plants through gradual and systematic establishment of necessary data.

  • PDF

The Development of Full-Scope Replica Type Simulator for PWR Nuclear Power Plants (가압경수로 원자력 발전소의 전범위 복제형 시뮬레이터 개발)

  • 이중근
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1997
  • Designing and constructing a proper simulator for real power plants requires extensive research in human engineering and computer science and integration of different fields of technologies such as system analysis, operational knowledge for nuclear plant, etc. A full scope replica type simulator for nuclear power plant is developed. The simulator has the same feature and operational functions as one in the main control room (MCR) of a reference power plant. The simulator provides the necessary training to recover or reduce damages from accidents that usually are unpredictable. This paper describes the configurations and characteristics for the simulator that is developed for Younggwang Nuclear Power Plant #3,4 which is the basic model of the Korean Nuclear Power Plant. The paper also describes technical aspects of Auto Code Generator that is used for developing the simulator. The successful development of the simulator will contribute to improve safety in operation of nuclear power plants.

  • PDF

Local Residents' Perception Analysis of Nuclear Power after the Thyroid Cancer Damage Lawsuit Adjacent to the Nuclear Plant (원전주변 갑상선암 발병 피해 소송 사건 이후 원자력에 대한 지역주민 인식 분석)

  • Lee, Jae-Heon;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.583-590
    • /
    • 2016
  • The subjects in this study are the residents of Busan, analyzing the perception gap between the residents adjacent to the nuclear plant and living in town, about the lawsuit of thyroid cancer damage nearby the nuclear plant, to distinguish the citizen's acceptance level about the nuclear power. 551 people(269 people adjacent to nuclear plant, 282 people in town) were face-to-face surveyed and the result showed that people's perceptions of the nuclear power has changed after the thyroid cancer damage lawsuit. In the case of the residents adjacent to the nuclear plant, it became clear that the negative perception of nuclear power became stronger due to increasing distrust and anxiety about nuclear power after the lawsuit of thyroid cancer damage nearby the nuclear plant. On the other hand, people living in town showed their positive perceptions of nuclear power despite the thyroid cancer damage lawsuit. However, two-sided perception was shown compared to the acceptance of nuclear power, since the safety and reliability of the nuclear power was analyzed as negative perception. Therefore, for the constant increased use of nuclear power in the future, national understanding and credibility, including the communication with the nation or the residents in the neighboring area of nuclear power plant, will be necessary.

Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process

  • Hasan, Md M.;Mayaka, Joyce K.;Jung, Jae C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.860-868
    • /
    • 2018
  • This article presents a new design of earthquake instrumentation that is suitable for quick decision-making after the seismic event at the nuclear power plant (NPP). The main objective of this work is to ensure more availability of the NPP by expediting walk-down period when the seismic wave is incident. In general, the decision-making to restart the NPP after the seismic event requires more than 1 month if an earthquake exceeds operating basis earthquake level. It affects to the plant availability significantly. Unnecessary shutdown can be skipped through quick assessments of operating basis earthquake, safe shutdown earthquake events, and damage status to structure, system, and components. Multidecision parameters such as cumulative absolute velocity, peak ground acceleration, Modified Mercalli Intensity Scale, floor response spectrum, and cumulative fatigue are discussed. The implementation scope on the field-programmable gate array platform of this work is limited to cumulative absolute velocity, peak ground acceleration, and Modified Mercalli Intensity. It can ensure better availability of the plant through integrated decision-making process by automatic assessment of NPP structure, system, and components.