• 제목/요약/키워드: Nuclear Fuel Cycles

검색결과 60건 처리시간 0.024초

Effect of High Temperature Treatment and Subsequent Oxidation anil Reduction on Powder Property of Simulated Spent Fuel

  • Song, Kun-Woo;Kim, Young-Ho;Kim, Bong-Goo;Lee, Jung-Won;Kim, Han-Soo;Yang, Myung-Seung;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.366-372
    • /
    • 1996
  • The simulated spent PWR fuel pellet which is corresponding to the turnup of 33,000 MWD/MTU is prepared by adding 11 fission-product elements to UO$_2$. The simulated spent fuel pellet is treated at 40$0^{\circ}C$ in air (oxidation), at 110$0^{\circ}C$ in air (high-temperature treatment), and at $600^{\circ}C$ in hydrogen (reduction). The product is treated through additional addition and reduction up to 3 cycles. Pellets are completely pulverized by the first oxidation, and the high-temperature treatment causes particle and crystallite to grow and surface to be smooth, and thus particle size significantly increases and surface area decreases. The reduction following the high-temperature treatment decreases much the particle size by means of the formation of intercrystalline cracks. The particle size decreases a little during the second oxidation and reduction cycle and then remains nearly constant during the third and fourth cycles. Surface area of pounder increases progressively with the repetition of oxidation and reduction cycles, mainly due to the formation of Surface cracks. The degradation of surface area resulting from high-temperature treatment is restored by too subsequent resulting oxidation and reduction cycles.

  • PDF

원자력발전 외부비용 연구들에 대한 검토 (Review on Studies for External Cost of Nuclear Power Generation)

  • 박병흥;고원일
    • 방사성폐기물학회지
    • /
    • 제13권4호
    • /
    • pp.271-282
    • /
    • 2015
  • 외부비용은 재화나 서비스가 생산 또는 소비되는 과정에서 제3자에게 부과되는 비용이다. 원자력 발전을 통한 전력생산에도 외부비용이 발생하며 이들에 대한 연구가 1990년대부터 진행되어 왔다. 비용은 정책결정에 중요한 요소로 전력 생산에 대한 비용 비교를 위해 외부비용이 고려되고 있다. 핵연료주기에서도 선택에 따라 다른 외부비용이 발생되지만 이에 대한 연구는 진행되고 있지 않다. 본 연구에서는 핵연료주기 외부비용 평가 방법 개발을 위해 원자력 발전에 대한 외부비용 평가방법을 조사하고 분석하였다. 후쿠시마 사고 이전에는 외부비용 연구들은 정상 운전 상태에서의 손상 비용에 초점을 두었다. 그러나 사고 이후 사고비용이 주요 주제가 되었다. 사고비용을 포함한 외부비용 범위는 여러 연구들에서 다양하게 사용되었으며 범위에 맞춰 다른 방법들이 적용되었다. 본 연구에서는 이러한 결과들이 비교되었으며 핵연료주기에 따른 외부비 용 추산에 방법적 적용성 판단을 위해 분석되었다.

Current Status of Nuclear Waste Management (and Disposal) in the United States

  • McMahon, K.;Swift, P.;Nutt, M.;Birkholzer, J.;Boyle, W.;Gunter, T.;Larson, N.;MacKinnon, R.;Sorenson, K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.29-35
    • /
    • 2013
  • The United States Department of Energy (US DOE) is conducting research and development (R&D) activities under the Used Fuel Disposition Campaign (UFDC) to support storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. R&D activities are ongoing at nine national laboratories, and are divided into storage, transportation and disposal. Storage R&D focuses on closing technical gaps related to extended storage of UNF. Transportation R&D focuses on ensuring transportability of UNF following extended storage, and addressing data gaps regarding nuclear fuel integrity, retrievability, and demonstration of subcriticality. Disposal R&D focuses on identifying geologic disposal options and addressing technical challenges for generic disposal concepts in mined repositories in salt, clay/shale, and granitic rocks, and deep borehole disposal. UFDC R&D goals include increasing confidence in the robustness of generic disposal concepts, reducing generic sources of uncertainty that may impact the viability of disposal concepts, and developing science and engineering tools to support the selection, characterization, and licensing of a repository. The US DOE has also initiated activities in the Nuclear Fuel Storage and Transportation (NFST) Planning Project to facilitate the development of an interim storage facility and to support transportation infrastructure in the near term.

U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

  • Miller, M.C.;Vega, D.A.
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.803-810
    • /
    • 2013
  • The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT) Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

Implementation of a Dry Process Fuel Cycle Model into the DYMOND Code

  • Park Joo Hwan;Jeong Chang Joon;Choi Hangbok
    • Nuclear Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.175-183
    • /
    • 2004
  • For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada deuterium uranium (CANDU) reactor, direct use of spent pressurized water reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-though and DUPIC fuel cycles.

Structural Integrity Evaluation of CANFLEX Fuel Bundle by Hydraulic Drag Load

  • H. Y. Kang;K. S. Sim;Lee, J. H.;Kim, T. H.;J. S. Jun;C. H. Chung;Park, J. H.;H. C. Suk
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.373-378
    • /
    • 1996
  • The CANFLEX fuel bundle has been developed by KAERI/AECL jointly to facilitate the use of various fuel cycles in CANDU-6 reactor. The structural analysis of the fuel bundles by hydraulic drag force is performed to evaluate the fuel integrity during the refuelling service. The present analysis method is newly developed for the structural integrity valuation by studying FEM modelling for the fuel bundles in a fuel channel. As compared the results of the mechanical strength test the displacement value of endplate given by analysis results shoo6 to be good agreement within 15% under the maximum design drag load. As the results of analysis, it is shown to keep the structural integrity of CANFLEX fuel bundles under hydraulic drag load during the refuelling service.

  • PDF

EVOLUTION OF NUCLEAR FUEL MANAGEMENT AND REACTOR OPERATIONAL AID TOOLS

  • TURINSKY PAUL J.;KELLER PAUL M.;ABDEL-KHALIK HANY S.
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented. This is done in support of the belief that further development of adaptive core simulation capabilities is required to further significantly advance the utility of core simulators in support of reactor operational aid tools.

Establishment of the Procedure to Prevent Boron Precipitation During Post-LOCA Long Term Cooling for WH 3-Loop NPPs

  • Cho, H.R.;Lee, S.K.;Ban, C.H.;Hwang, S.T.;Chang, B.H.
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.47-57
    • /
    • 1998
  • Boric acid concentrations of the refueling water storage tank and the accumulators for Westinghouse 3-loop type plants are increased to meet the post loss of coolant accident shutdown requirement for the extended fuel cycles from 12 months to 18 months. To maintain long term cooling capability following a LOCA, the switchover time is examined using BORON code to prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results show that hot leg recirculation switchover times are shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3&4 and 8 hours from 18 hours for Ulchin 1&2, respectively. The How path in the mode J for Kori 3&4 is recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1&2.

  • PDF