• Title/Summary/Keyword: Nuclear Fuel Cycle Cost

Search Result 88, Processing Time 0.021 seconds

A Study on the Determinants of Decommissioing Cost for Nuclear Power Plant (NPP)

  • Cha, Hyungi;Yoon, Yongbeum;Park, Soojin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.87-111
    • /
    • 2021
  • Nuclear power plants (NPPs) produce radioactive waste and decommissioning this waste entails additional cost; determining these costs for various types and specifications of radioactive waste can be challenging. The purpose of this study is to identify major determinants of the decommissioning cost and their impact on NPPs. To this end, data from defunct NPPs were gathered and 2SLS (Two Stage Least Squares) regression models were developed to investigate the major contributors depending on the reactor types, viz. PWR (Pressurized Water Reactors) and BWR (Boiling Water Reactors). Additionally, cost estimations and the Monte Carlo simulation were performed as part of performance validation. Our study established that the decommissioning costs are primarily influenced by the level of radioactivity in the decommissioned waste, which can be realized from operational factors like operation period, overall efficiency, and plant capacity, as well as from duration of decommissioning and labour cost. While our study provides an improved statistical approach to recognize these factors, we acknowledge that our models have limitations in forecasting accurately which we envisage to bolster in future studies by identifying more substantive factors.

Design Analysis of a Thorium Fueled Reactor with Seed-Blanket Assembly Configuration

  • Lee, Kyung-Taek;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.21-26
    • /
    • 1997
  • Recently, thorium is receiving increasing attention as an important fertile material for the expanding nuclear power programs around the world. The superior nuclear and physical properties of thorium-based fuels could lead to very low fuel cycle cost and make thorium reactors economically attractive. In addition, the use of thorium in reactors would permit more efficient utilization of low cost uranium reserves and reduction nuclear wastes. In this work, the nuclear characteristics of a new type thorium fueled reactor (Radkowsky Thorium Reactor) consisting seed-blanket assemblies are addressed and compared with those typical assemblies of a PWR (CE type). Also, an assessment on several advantages of thorium fueled reactors is provided. All these results are based on the HELIOS code calculation.

  • PDF

The In-Core Fuel Management by Variational Method (변분법에 의한 노심 핵연료 관리)

  • Kyung-Eung Kim
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.181-194
    • /
    • 1984
  • The in-core fuel management problem was studied by use of the calculus of variations. Two functions of interest to a public power utility, the profit function and the cost function, were subjected to the constraints of criticality, the reactor turnup equations and an inequality constraint on the maximum allowable power density. The variational solution of the initial profit rate demonstrated that there are two distinct regions of the reactor, a constant power region and a minimum inventory or flat thermal flux region. The transition point between these regions is dependent on the relative importance of the profit for generating power and the interest charges for the fuel. The fuel cycle cost function was then used to optimize a three equal volume region reactor with a constant fuel enrichment. The inequality constraint on the maximum allowable power density requires that the inequality become an equality constraint at some points in the reactor. and at all times throughout the core cycle. The finite difference equations for reactor criticality and fuel burnup in conjunction with the equality constraint on power density were solved, and the method of gradients was used to locate an optimum enrichment. The results of this calculation showed that standard non-linear optimization techniques can be used to optimize a reactor when the inequality constraints are properly applied.

  • PDF

Analysis of Fuelling Sequence and Fatigue Life for 4-Bundle Shift Refuelling Scheme in CANDU6 NPP

  • Namgung, Ihn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.176-185
    • /
    • 2002
  • A 4-bundle shift refuelling method of CANDU6 F/H (Fuel Handling) System is analyzed to assess the operational flexibility and capacity of F/H system. The current 8-bundle shift refuelling scheme requires to refuel eight fuel bundles from a single fuel channel, and to refuel 14 fuel channels in a week on average assuming that the reactor is in a steady state. The analysis showed that the 4-bundle shift refuelling method increases F/M (Fuelling Machine) duty cycle and operator load. However, the fuellin’g method change from the 8- to 4-bundle shift refuelling ill not require additional team of operators. A marginal increase in the maintenance cost may be resulted in by the change of fuelling method and the increase of fatigue usage factors requires some components to be replaced during the FM lifetime.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

Cost Comparison of PWR and PHWR Nuclear Power Plants in Korea

  • Kim, Chang-Hyo;Chung, Chang-Hyun;So, Dong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.263-274
    • /
    • 1979
  • A statistical approach is used to investigate the relative economic advantages of pressurized water reactor (PWR) and pressurized heavy water reactor (PHWR-CANDU) nuclear power plants for hypothetical 900Mwe systems with the throwaway fuel cycle to be built in the Republic of Korea. Power cost is decomposed into the cost components related to the plant capital, operation and maintenance, working capital requirements and fuel cycle operation. The calculation of construction cost is performed with the modified version of computer code ORCOST, and the modified POWERCO-50 is used to evaluate the cost components. Most of economic parameters are treated as statistical variables, each being given with a certain range. Through a random sampling procedures. the probability histograms on unit plant construction costs and power generating costs are obtained. The power cost probability histograms of the PWR and the PHWR plants overlap considerably, and the power costs of two systems appear to be almost same with the PHWR power cost being 0.4mil1/kwh lower compared with 39.4 mills/kwh for the PWR plant (July 1986 US-dollars). When a construction period of PHWR plant is longer by one year than that of PWR plant, there is no difference in the unit power cost of two plants. This comparison leads to no definite conclusion on the cost advantage of the PWR plant versus the PHWR plant. We conclude that the selection issue of nuclear power plants in Korea still remains an open question and that future effort to solve this question should be made toward economic quantification of those factors such as technology transfer and localization.

  • PDF

Basis for a Minimalistic Salt Treatment Approach for Pyroprocessing Commercial Nuclear Fuel

  • Simpson, Michael F.;Bagri, Prashant
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • A simplified flowsheet for pyroprocessing commercial spent fuel is proposed in which the only salt treatment step is actinide drawdown from electrorefiner salt. Actinide drawdown can be performed using a simple galvanic reduction process utilizing the reducing potential of gadolinium metal. Recent results of equilibrium reduction potentials for Gd, Ce, Nd, and La are summarized. A description of a recent experiment to demonstrate galvanic reduction with gadolinium is reviewed. Based on these experimental results and material balances of the flowsheet, this new variant of the pyroprocessing scheme is expected to meet the objectives of minimizing cost, maximizing processing rate, minimizing proliferation risk, and optimizing the utilization of geologic repository space.

Spent Nuclear Fuel Management in South Korea: Current Status and the Way Forward (사용후핵연료 관리 현안 및 정책 제언)

  • Hwang, Yongsoo;Chang, Sunyoung;Han, Jae-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.312-323
    • /
    • 2015
  • This paper presents future directions for spent nuclear fuel and high-level radioactive waste management. The successes and failures of siting nuclear waste repository experienced by the United States and other countries are reviewed with the current policy stance. Further, the needs for establishing management policy, considering the high-level radioactive waste produced by the dismantlement, nuclear security concerns, and cost-effectiveness analysis for the total nuclear fuel cycle, are emphasised. Technical discussions are organised into three main topics: interim storage, permanent disposal, and reprocessing. Licensing regimes are also investigated to suggest strategic plans for research and development programmes in the Republic of Korea.

Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia

  • Salah Ud-Din Khan;Rawaiz Khan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1244-1249
    • /
    • 2023
  • Recently, the Kingdom of Saudi Arabia (KSA) announced the development of first-of-a-kind(FOAK) and most advanced futuristic vertical city and named as 'The LINE'. The project will have zero carbon dioxide emissions and will be powered by clean energy sources. Therefore, a study was designed to understand which clean energy sources might be a better choice. Because of its nearly carbon-free footprint, nuclear energy may be a good choice. Nowadays, the development of very small modular reactors (vSMRs) is gaining attention due to many salient features such as cost efficiency and zero carbon emissions. These reactors are one step down to actual small modular reactors (SMRs) in terms of power and size. SMRs typically have a power range of 20 MWe to 300 MWe, while vSMRs have a power range of 1-20 MWe. Therefore, a study was conducted to discuss different vSMRs in terms of design, technology types, safety features, capabilities, potential, and economics. After conducting the comparative test and analysis, the fuel cycle modeling of optimal and suitable reactor was calculated. Furthermore, the levelized unit cost of electricity for each reactor was compared to determine the most suitable vSMR, which is then compared other generation SMRs to evaluate the cost variations per MWe in terms of size and operation. The main objective of the research was to identify the most cost effective and simple vSMR that can be easily installed and deployed.