• Title/Summary/Keyword: Nuclear Fuel Cladding

Search Result 360, Processing Time 0.022 seconds

System Configuration of Ultrasonic Nuclear Fuel Cleaner and Quantitative Weight Measurement of Removed CRUD (초음파 핵연료 세정장비의 시스템 구성과 제거된 크러드의 정량적 무게 측정법)

  • Jung Cheol Shin;Hak Yun Lee;Un Hak Seong;Yeong Jong Joo;Yong Chan Kim;Wook Jin Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Crud is a corrosion deposit that forms in equipments and piping of nuclear reactor's primary systems. When crud circulates through the reactor's primary system coolant and adheres to the surface of the nuclear fuel cladding tube, it can lead to the Axial Offset Anomaly (AOA) phenomenon. This occurrence is known to potentially reduce the output of a nuclear power plant or to necessitate an early shutdown. Consequently, worldwide nuclear power plants have employed ultrasonic cleaning methods since 2000 to mitigate crud deposition, ensuring stable operation and economic efficiency. This paper details the system configuration of ultrasonic nuclear fuel cleaning equipment, outlining the function of each component. The objective is to contribute to the local domestic production of ultrasonic nuclear fuel cleaning equipment. Additionally, the paper introduces a method for accurately measuring the weight of removed crud, a crucial factor in assessing cleaning effectiveness and providing input data for the BOA code used in core safety evaluations. Accurate measurement of highly radioactive filters containing crud is essential, and weighing them underwater is a common practice. However, the buoyancy effect during underwater weighing may lead to an overestimation of the collected crud's weight. To address this issue, the paper proposes a formula correcting for buoyancy errors, enhancing measurement accuracy. This improved weight measurement method, accounting for buoyancy effects in water, is expected to facilitate the quantitative assessment of filter weights generated during chemical decontamination and system operations in nuclear power plants.

A Feasibility Study on the Brazing of Zircaloy-4 with Zr-Be Binary Amorphous Filler Metals (비정질 이원계 합금 Zr-Be 용가재를 이용한 지르칼로이-4의 브레이징 타당성 검토)

  • 고진현;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.26-31
    • /
    • 1999
  • An attempt was made in this study to investigate the brazing characteristics of Zr-Be binary amorphous alloys for the development of a new brazing filler metal for joining Zircaloy-4 nuclear fuel cladding tubes. This study was also aimed at the feasibility study of rapidly solidified amorphous alloys to substitute the conventional physical vapor-deposited(PVD) metallic beryllium. The $Zr_{1-x}Be_{x}$($0.3\leq$x$\leq0.5$) binary amorphous alloys were produced in the ribbon form by the melt-spinning method. It was confirmed by x-ray diffraction that the ribbons were amorphous. The amorphous. the amorphous alloys were used to join bearing pads on Zircaloy-4 nuclear fuel cladding tubes. Using Zr-Be amorphous alloys as filler metals, it was found that the reduction in the tube wall thickness caused by erosion was prevented. Especially, in the case of using $Zr_{0.65}Be_{0.35}$ and $Zr_{0.7}Be_{0.3}$ amorphousalloys, the smooth and spherical primary $\alpha$-Zr particles appeared in the brazed layer, which was the most desirable microstructure from the corrosion-resistance standpoint.

  • PDF

The Effect of $\beta$-Heat Treatment on the Microstructure and Mechanical Characteristics of Zircaloy-4 for Nuclear Fuel Cladding (핵연료 피복관용 지르칼로이-4의 미세조직과 기계적 특성에 미치는 $\beta$-열처리의 영향)

  • Koh, Jin-Hyun;Oh, Young-Kun;Kim, Gwang-Soo
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.589-594
    • /
    • 1999
  • The effect of $\beta$-heat treatment on th microstructure, mechanical properties and texture in the nuclear fuel cladding of Zircaloy-4 tubes was chosen at 1000, 1100 and 120$0^{\circ}C$, and the tubes were heat-treated by a high frequency vacuum induction furnace. Morphology of the second phase particles and $\alpha$-grain of as-received tubes were markedly changed by heat treatment. The average sizes of second phase particles of as-received and $\beta$-heat treated tubes were 0.1$\mu\textrm{m}$ and 0.076$\mu\textrm{m}$, respectively. However, the average sizes of second phase particles were not much changed in the $\beta$-heated temperatures. With increasing heat treatment temperatures, the 0.2% yield strength and the hoop strength were decreased because of changes in preferred orientation as will as $\alpha$-plate width. Heat treated Zircaloy-4 tubes exhibited texture changes but the preferred orientation of grains still remained.

  • PDF

Modelling Heat Transfer Through CRUD Deposited on Cladding Tube in UNIST-DISNY Facility (UNIST-DISNY 설비 피복관에 침적된 크러드의 열전달 모델링)

  • Seon Oh YU;Ji Yong Kim;In Cheol Bang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2023
  • This study presents a CRUD modelling to simulate the thermal resistance behavior of CRUD, deposited on the surface of a cladding tube of a fuel assembly. When heat produced from fuels transfers to a coolant through a cladding tube, the CRUD acting as an additional thermal resistance is expressed as two layers, i.e., a solid oxide layer and an imaginary fluid layer, which are added to the experimental tube's heat structure of the MARS-KS input data. The validation calculation for the experiments performed in UNIST-DISNY facility showed that the center and surface temperatures of the cladding tube increased as the porosity and the steam amount inside pores of the CRUD got higher. In addition, the temperature gradient in the imaginary fluid layer was calculated to be larger than that in the solid oxide part, indicating that the steam amount inside the layer acted more largely as thermal resistance. It was also evaluated through sensitivity calculations that the cladding tube temperature was more sensitive to the CRUD porosity and the steam amount in pores than to the inlet flow rate of the coolant.

Development of Sodium Voiding Model for the KALIMER Analysis

  • Chang, Won-Pyo;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.286-300
    • /
    • 2002
  • An algorithm for the sodium boiling model has been developed for calculation of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. Modeling of sodium boiling in liquid metal reactors using sodium as a coolant is necessary because of phenomenon difference comparing with that observed generally in light water reactor systems. The applied model to the algorithm is the multiple-bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbies that (ill the whole cross section of the coolant channel except for the liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble The present study is focused on not only demonstration of the vapor bubble behavior predicted by the developed model, but also confirmation of a qualitative acceptance for the model. As a result, the model can represent important phenomena in the sodium boiling, but it is found that further effort is also needed for its completition.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.

Effect of Filament Winding Methods on Surface Roughness and Fiber Volume Fraction of SiCf/SiC Composite Tubes (SiCf/SiC 복합체 튜브의 표면조도 및 섬유 부피 분율에 미치는 필라멘트 와인딩 방법의 영향)

  • Kim, Daejong;Lee, Jongmin;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.359-363
    • /
    • 2013
  • Silicon carbide and its composites are being considered as a nuclear fuel cladding material for LWR nuclear reactors because they have a low neutron absorption cross section, low hydrogen production under accident conditions, and high strength at high temperatures. The SiC composite cladding tube considered in this study consists of three layers, monolith CVD SiC - $SiC_f$/SiC composite -monolith CVD SiC. The volume fraction of SiC fiber and surface roughness of the composite layer affect mechanical and corrosion properties of the cladding tube. In this study, various types of SiC fiber preforms with tubular shapes were fabricated by a filament winding method using two types of Tyranno SA3 grade SiC fibers with 800 filaments/yarn and 1600 filaments/yarn. After chemical vapor infiltration of the SiC matrix, the surface roughness and fiber volume fraction were measured. As filament counts were changed from 800 to 1600, the surface roughness increased but the fiber volume fraction decreased. The $SiC_f$/SiC composite with a bamboo-like winding pattern has a smaller surface roughness and a higher fiber volume fraction than that with a zigzag winding pattern.

Fracture simulation of SFR metallic fuel pin using finite element damage analysis method

  • Jung, Hyun-Woo;Song, Hyun-Kyu;Kim, Yun-Jae;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.932-941
    • /
    • 2021
  • This paper suggests a fracture simulation method for SFR metallic fuel pin under accident condition. Two major failure mechanisms - creep damage and eutectic penetration - are implemented in the suggested method. To simulate damaged element, stress-reduction concept to reduce stiffness of the damaged element is applied. Using the proposed method, the failure size of cladding can be predicted in addition to the failure time and failure site. To verify the suggested method, Whole-pin furnace (WPF) test and TREAT-M test conducted at Argonne National Laboratory (ANL) are simulated. In all cases, predicted results and experimental results are overall in good agreement. Based on the simulation result, the effect of eutectic-penetration depth representing failure behavior on failure size is studied.