• Title/Summary/Keyword: Nuclear Factor kappa B ($NF-kB$

Search Result 593, Processing Time 0.032 seconds

Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-κB Signaling

  • Shao, Hong Jun;Lou, Zhiyuan;Jeong, Jin Boo;Kim, Kui Jin;Lee, Jihye;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • Tolfenamic acid (TA) is a traditional non-steroid anti-inflammatory drug (NSAID) and has been broadly used for the treatment of migraines. Nuclear factor kappa B (NF-${\kappa}B$) is a sequence-specific transcription factor and plays a key role in the development and progression of inflammation and cancer. We performed the current study to investigate the underlying mechanisms by which TA suppresses inflammation focusing on NF-${\kappa}B$ pathway in TNF-${\alpha}$ stimulated human normal and cancer cell lines and lipopolysaccharide (LPS)-stimulated mouse macrophages. Different types of human cells (HCT116, HT-29 and HEK293) and mouse macrophages (RAW264.7) were pre-treated with different concentrations of TA and then exposed to inflammatory stimuli such as TNF-${\alpha}$ and LPS. Transcriptional activity of NF-${\kappa}B$, $l{\kappa}B-{\alpha}$-degradation, p65 translocation and mitogen-activated protein kinase (MAPK) activations were measured using luciferase assay and Western blots. Pre-treatment of TA repressed TNF-${\alpha}$- or LPS-stimulated NF-${\kappa}B$ transactivation in a dose-dependent manner. TA treatment reduced degradation of $l{\kappa}B-{\alpha}$ and subsequent translocation of p65 into nucleus. TA significantly down-regulated the phosphorylation of c-Jun N-terminal kinase (JNK). However, TA had no effect on NF-${\kappa}B$ signaling and JNK phosphorylation in HT-29 human colorectal cancer cells. TA possesses anti-inflammatory activities through suppression of JNK/NF-${\kappa}B$ pathway in different types of cells.

Characterization of anti-inflammatory effect of soybean septapeptide and its molecular mechanism (대두 septapeptide의 항염 효과 및 분자 기작 규명)

  • Lewis, Kevin M.;Sattler, Steven A.;Kang, ChulHee;Wu, Hong Min;Kim, Sang Geon;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.208-213
    • /
    • 2018
  • Activation of nuclear factor kappa B ($NF{\kappa}B$) leads to the inflammatory process. During this $NF{\kappa}B$-dependent inflammation process, inducible nitric oxide synthase (iNOS) are expressed in the inflammatory cells. Our previous data indicated that a specific septapeptide (GVAWWMY) from the soybean extract fermented by Bacillus licheniformis B1 inhibited iNOS mRNA expression and NO production in cultured macrophage cells. Our further experiments revealed that treatment of same septapeptide resulted in inhibition of LPS-induced $NF{\kappa}B$ activation by reversing degradation of $I{\kappa}B{\alpha}$, an inhibitory protein for $NF{\kappa}B$. The molecular docking indicated that the septapeptide binds to $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and thus it can inhibit phosphorylation of $I{\kappa}B{\alpha}$. Supporting this, the binding site for the septapeptide has the highest affinity (-8.7 kcal/mol) and the site was located at the kinase domain (KD) of $IKK{\beta}$, which can significantly affect the kinase activity of $IKK{\beta}$.

Auranofin Downregulates Nuclear Factor-κB Activation via Nrf2-Independent Mechanism (오라노핀에 의한 nuclear factor κB 활성저해는 Nrf2 활성화와 무관한 기전에 의함)

  • Kim, Nam-Hoon;Park, Hyo-Jung;Kim, In-Sook
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1772-1776
    • /
    • 2010
  • Transcription factors Nrf2 and NF-${\kappa}B$ are important regulators of the innate immune response, and their cross-talks in inflammation have been reported. Previously, we demonstrated that gold(I)-compound auranofin, an inhibitor of NF-${\kappa}B$ signal, induced Nrf2 activation in human synovial cells and monocytic cells. To investigate whether the Nrf2 activation is involved in the mechanism of the auranofin-attenuated NF-${\kappa}B$ signaling, we examined the effects of Nrf2 knockdown on NF-${\kappa}B$ activation using rheumatic synovial cells. When the cells were transfected with a specific siRNA for Nrf2, the gene expression was perfectly blocked. However, the Nrf2 knockdown did not cancel the suppressive effect of auranofin on TNF-$\alpha$-induced $I{\kappa}B-{\alpha}$ degradation. Treatment with a specific siRNA for HO-1, which is a target of Nrf2 and plays a role in anti-inflammation, also did not affect the blocking activity of auranofin on $I{\kappa}B-{\alpha}$ degradation. In addition, auranofin-inhibited ICAM-1 expression was not restored by Nrf2 knockdown. These findings indicate that the activated Nrf2 and HO-1 are not associated with the suppressive action of auranofin on the pro-inflammatory cytokines-stimulated NF-${\kappa}B$ activation. This suggests that Nrf2/HO-1 and NF-${\kappa}B$ signals, which are regulated by auranofin, participate in the anti-inflammatory action of auranofin via independent pathways in rheumatic synovial cells.

Trans-10, cis-12 Conjugated Linoleic Acid Modulates Tumor Necrosis Factor-${\alpha}$ Production and Nuclear Factor-${\kappa}B$ Activation in RAW 264.7 Macrophages Through Formation of Reactive Oxygen Species (RAW 264.7 세포에 있어 t10c12-CLA의 ROS를 통한 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성 조절)

  • Park, So-Young;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.469-476
    • /
    • 2014
  • The aims of this study were to explore the effects of conjugated linoleic acid (CLA) on reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-naïve and LPS-stimulated RAW 264.7 macrophages and to examine whether these effects affect the regulation of tumor necrosis factor-alpha (TNF-${\alpha}$) production, and nuclear factor-kappa B (NF-${\kappa}B$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) activation. Trans-10, cis-12(t10c12)-CLA increased the production of ROS, as well as TNF-${\alpha}$ in LPS-naïve RAW 264.7 cells. The CLA-induced TNF-${\alpha}$ production was suppressed by treatment of diphenyleneiodonium chloride (DPI), a NADPH oxidase inhibitor. In addition, CLA enhanced the activities of NF-${\kappa}B$ and $PPAR{\gamma}$ in LPS-naïve RAW 264.7 cells, and this effect was abolished with DPI treatment. LPS treatment increased ROS production, whereas CLA reduced LPS-induced ROS production. LPS increased both TNF-${\alpha}$ production and NF-${\kappa}B$ activity, whereas t10c12-CLA reduced TNF-${\alpha}$ production and NF-${\kappa}B$ activity in LPS-stimulated RAW 264.7 cells. DPI treatment suppressed LPS-induced ROS production and NF-${\kappa}B$ activity. Moreover, DPI enhanced the inhibitory effects of t10c12-CLA on TNF-${\alpha}$ production and NF-${\kappa}B$ activation in LPS-stimulated RAW 264.7 cells. However, neither t10c12-CLA nor DPI affected $PPAR{\gamma}$ activity in LPS-stimulated RAW 264.7 cells. Taken together, these data indicate that t10c12-CLA induces TNF-${\alpha}$ production by increasing ROS production in LPS-naïve RAW 264.7 cells, which is mediated by the enhancement of NF-${\kappa}B$ activity via $PPAR{\gamma}$ activation. By contrast, t10c12-CLA suppresses TNF-${\alpha}$ production by inhibiting ROS production and NF-${\kappa}B$ activation via a $PPAR{\gamma}$-independent pathway in LPS-stimulated RAW 264.7 cells. These results suggest that t10c12-CLA can modulate TNF-${\alpha}$ production and NF-${\kappa}B$ activation through formation of ROS in RAW 264.7 macrophages.

Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells (인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할)

  • Lee, Sun Young;Yang, Ji won;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2013
  • Human adipose tissue-derived mesenchymal stem cells (hADSCs) have therapeutic potential, including the ability to self-renew and differentiate into multiple lineages. Understanding of molecular mechanisms of stem cell differentiation is important for improving the therapeutic efficacies of stem cell transplantation. In this study, we determined the role of nuclear factor of activated T cells (NFAT5) in the osteogenic differentiation of hADSCs. The down-regulation of NFAT5 expression by the transfection of a specific siRNA significantly inhibited osteogenic differentiation of hADSCs and decreased the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) promoter without affecting their proliferation and adipogenic differentiation. The inhibition of NFAT5 expression inhibited the basal and Tumor Necrosis Factor ${\alpha}$ (TNF-${\alpha}$) induced activation of NF-${\kappa}B$, but it did not affect TNF-${\alpha}$-induced degradation of the $I{\kappa}B$ protein. These findings indicate that NFAT5 plays an important role in the osteogenic differentiation of hADSCs through the modulation of the NF-${\kappa}B$ pathway.

Inhibition of the Expression of Matrix Metalloproteinases in Articular Chondrocytes by Resveratrol through Affecting Nuclear Factor-Kappa B Signaling Pathway

  • Kang, Dong-Geun;Lee, Hyun Jae;Lee, Choong Jae;Park, Jin Sung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.560-567
    • /
    • 2018
  • In the present study, we tried to examine whether resveratrol regulates the expression of matrix metalloproteinases (MMPs) through affecting nuclear factor-kappa B ($NF-{\kappa}B$) in articular chondrocytes. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-${\beta}$ ($IL-1{\beta}$)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of resveratrol on $IL-1{\beta}$-induced secretion of MMP-3 was investigated in rabbit articular chondrocytes using western blot analysis. To elucidate the action mechanism of resveratrol, effect of resveratrol on $IL-1{\beta}$-induced $NF-{\kappa}B$ signaling pathway was investigated in SW1353, a human chondrosarcoma cell line, by western blot analysis. The results were as follows: (1) resveratrol inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) resveratrol reduced the secretion of MMP-3; (3) resveratrol inhibited $IL-1{\beta}$induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa $B{\alpha}$ ($I{\kappa}B{\alpha}$); (4) resveratrol inhibited $IL-1{\beta}$-induced phosphorylation and nuclear translocation of $NF-{\kappa}B$ p65. This, in turn, led to the down-regulation of gene expression of MMPs in SW1353 cells. These results suggest that resveratrol can regulate the expression of MMPs through affecting $NF-{\kappa}B$ by directly acting on articular chondrocytes.

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

The Effect of Allergic Inflamation by Sophora Flavescens Aiton Extract Ion Through Inhibition of the $NF{\kappa}B$, JNK and p38 Pathway (고삼(苦蔘)에탄올 추출물이 $NF{\kappa}B$ 및 JNK, p38 조절을 통한 알레르기성 염증에 미치는 영향)

  • Lee, Ji-Young;Park, Seong-Sik
    • Journal of Sasang Constitutional Medicine
    • /
    • v.21 no.1
    • /
    • pp.139-149
    • /
    • 2009
  • 1. Objectives The roots of Sophora flavescens Aiton (SFA) are widely used as a herbal remedy for allergic inflammation. In this study, we invested the effect of SFA on passive cutaneous anaphylaxis reaction and histamin releas and we demonstrated that SFA suppressed the production of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin- 6 (IL-6), and interleukin -8 (IL-8), through inhibition of the $NF{\kappa}B$, JNK and p38 pathway in the human mast cell line, HMC-1. 2. Methods To accomplish this, we invested passive cutaneous anaphylaxis reaction and histamin release at an animal experiment. In addition, we investigated the effect of SFA on the production of inflammation-related cytokines in HMC-1 cells that were co-treated with PMA and A23187, which can induce production of pro-inflammatory cytokines. 3. Results and Conclusions SFA induced passive cutaneous anaphylaxis reaction and histamin releas and supressed the expression of TNF-${\alpha}$, IL-6, and IL-8. In addition, the protein levels of TNF-${\alpha}$ were also decreased by SFA treatment. Furthermore, SFA inhibited the nuclear translocation of nuclear factor $NF{\kappa}B$ through inhibition of the phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which is an inhibitor of $NF{\kappa}B$. Moreover, SFA also inhibited induction of MAPKs (JNK, p38) and $NF{\kappa}B$ promoter-mediated luciferase activity. Taken together, these results suggest that SFA could be used as a treatment for mast cell-derived allergic inflammatory diseases.

  • PDF

Platelet-Activating Factor Enhances Experimental Pulmonary Metastasis of Murine Sarcoma Cells by Up-regulation of Matrix Metalloproteinases-9 Through NF-$\kappa$B-Dependent Pathway

  • Ko, Hyun-Mi;Back, Hae-Kyong
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, a process that is necessary for angiogenesis, tumor invasion and metastasis. Platelet-activating factor (PAP) increases angiogenesis, tumor growth and metastasis through nuclear factor (NF)-$\kappa$B activation. Based on these facts, the involvement of MMPs in PAF-induced pulmonary metastasis was investigated in murine sarcoma cells, MMSV-BALB/3T3. Messenger RNA expression and enzymatic activity of MMP-9 were assessed by RT-PCR and zymography, and cell migration and metastasis were done for the detection of MMP-9 functional activity. PAP induced mRNA expression and enzymatic activity of MMP-9, and its effects were either inhibited by the PAP antagonist, WEB 2170 or by the NF-$\kappa$B inhibitor, parthenolide, or p65 antisense oligonucleotide in a dose-dependent manner. In addition, PAF induced promoter activity of MMP-9, which was inhibited by WEB 2170, phenanthroline, NAC, PDTC. These results indicate that PAF induces mRNA expression and enzymatic activity of MMP-9 in NF-$\kappa$B dependent manner. Cell migration assay showed that PAF induced MMSV-BALB/3T3 migration, and its effect was significantly inhibited by treatment with phenanthroline. PAF enhanced pulmonary metastasis of murine sarcoma cells, MMSV-BALB/3T3 was also reduced by phenanthroline. These results suggest that PAF-enhanced cell migration and pulmonary metastasis is mediated through the expression of MMP. In conclusion, It is suggested that PAF enhances pulmonary metastasis by inducing MMP-9 expression via the activation of NF-$\kappa$B.

  • PDF