Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8041

Characterization of anti-inflammatory effect of soybean septapeptide and its molecular mechanism  

Lewis, Kevin M. (Department of Chemistry, Washington state University)
Sattler, Steven A. (School of Molecular Biosciences, Washington state University)
Kang, ChulHee (Department of Chemistry, Washington state University)
Wu, Hong Min (College of Pharmacy, Seoul National University)
Kim, Sang Geon (College of Pharmacy, Seoul National University)
Kim, Han Bok (Department of Biotechnology, Hoseo University)
Publication Information
Korean Journal of Microbiology / v.54, no.3, 2018 , pp. 208-213 More about this Journal
Abstract
Activation of nuclear factor kappa B ($NF{\kappa}B$) leads to the inflammatory process. During this $NF{\kappa}B$-dependent inflammation process, inducible nitric oxide synthase (iNOS) are expressed in the inflammatory cells. Our previous data indicated that a specific septapeptide (GVAWWMY) from the soybean extract fermented by Bacillus licheniformis B1 inhibited iNOS mRNA expression and NO production in cultured macrophage cells. Our further experiments revealed that treatment of same septapeptide resulted in inhibition of LPS-induced $NF{\kappa}B$ activation by reversing degradation of $I{\kappa}B{\alpha}$, an inhibitory protein for $NF{\kappa}B$. The molecular docking indicated that the septapeptide binds to $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and thus it can inhibit phosphorylation of $I{\kappa}B{\alpha}$. Supporting this, the binding site for the septapeptide has the highest affinity (-8.7 kcal/mol) and the site was located at the kinase domain (KD) of $IKK{\beta}$, which can significantly affect the kinase activity of $IKK{\beta}$.
Keywords
fermented soybean; $I{\kappa}B{\alpha}$; $IKK{\beta}$; molecular docking; $NF{\kappa}B$; septapeptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanner MF. 1999. Phython: a programming language for software integration and development. J. Mol. Graph. Model 17, 57-61.
2 Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, and Omata M. 2007. Cutting edge: The $I{\kappa}B$ kinase (IKK) inhibitor, MEMO-binding domain peptide blocks inflammatory injury in murine colitis. J. Immunol. 179, 2681-2685.   DOI
3 Strana J and Burke JR. 2007. Ikappa B kinase inhibitors for treating auto immune and inflammatory disorders: potential and challenges. Pharmacol. Sci. 28, 142-148.
4 Stroud JC, Oltman A, Han A, Bates DL, and Chen L. 2009. Structural basis of HIV-1activation by NF-kappaB-a higher order complex of p50: RelA bound to the HIV-1 LTR. J. Mol. Biol. 393, 98-112.   DOI
5 Michael K. 1999. How $NF{\kappa}B$ is regulated: the role of the $I{\kappa}B$ kinase (IKK) complex. Oncogene 18, 6867-6874.   DOI
6 Dolcet X, Llobet D, Pallares J, and Matias-Guiu X. 2005. NF-${\kappa}B$ in development and progression of human cancer. Virchows Arch. 446, 475-482.   DOI
7 Emsley P, Lohkamp B, Scott WG, and Cowtan K. 2010. Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501.   DOI
8 Kelley LA, Mezulis S, Yates CM, Wass MN, and Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845-858.   DOI
9 Ghosh S and Karin M. 2002. Missing pieces in the NF-${\kappa}B$ puzzle. Cell 109, S81-S96.   DOI
10 Hwang JS, Yoo HJ, Song HJ, Kim KK, Chun YJ, Matsui T, and Kim HB. 2011. Inflammation-related signaling pathways implicating $TGF{\beta}$ are revealed in the expression profiling of MCF cell treated with fermented soybean, Chungkookjang. Nutr. Cancer 63, 645-652.   DOI
11 Lee JJ, Lee DS, and Kim HB. 1999. Fermentation patterns of Chungkookjang and Kanjang by Bacillus licheniformis B1. Korean J. Microbiol. 35, 296-301.
12 Lee WH, Wu HM, Lee CG, Sung DI, Song HJ, Matsui T, Kim HB, and Kim SG. 2014. Specific oligopeptides in fermented soybean extract inhibit NF-${\kappa}B$-dependent iNOS and cytokine induction by Toll-like receptor ligands. J. Med. Food 17, 1239-1246.   DOI
13 Makarov SS. 2001. NF-kappaB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3, 200-206.   DOI
14 Mathes E, O'Dea EL, Hoffmann A, and Ghosh G. 2008. NF-${\kappa}B$ dictates the degradation pathway of $I{\kappa}B{\alpha}$. EMBO J. 27, 1357-1367.   DOI
15 Matsui T, Yoo HJ, Hwang JS, Lee DS, and Kim HB. 2004. Isolation of angiotensin 1-converting enzyme inhibitory peptide from Chungkookjang. Korean J. Microbiol. 40, 355-358.
16 Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral, GJ, Grosse-Kunstleve RW, et al. 2010. Phenix: a comprehensive Python-based system for macromolecular structure resolution. Acta Cryst. D66, 213-221.
17 Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, and Wu H. 2011. Crystal structure of inhibitor of ${\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$). Nature 472, 325-330.   DOI
18 Cramer P, Larson CJ, Verdine GL, and Muller CW. 1997. Structure of the human NF-${\kappa}B$ p52 homodimer-DNA complex at 2.1 ${\AA}$ resolution. EMBO J. 16, 7078-7090.   DOI
19 Trott O and Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455-461.
20 Whiteside ST and Israel A. 1997. $I{\kappa}B$ proteins: structure, function and regulation. Sem. Cancer Biol. 8, 75-82.   DOI
21 Yoo HJ, Hwang JS, and Kim HB. 2007. Mass analysis of isoflavones in Chungkookjang. Korean J. Microbiol. 43, 54-58.
22 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, and Olson AJ. 2009. Auto dock4 and auto dock tools 4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791.   DOI
23 Muller CW, Rey FA, Sodeoka M, Verdine GL, and Harrison SC. 1995. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 373, 311-317.   DOI
24 Ndlovu MN, Lint CV, Wesemael KV, Callebert P, Chalbose D, Haegeman G, and Berghe WV. 2009. Hyperactivated $NF{\kappa}B$ and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the innterleukin-6 gene promoter in metastatic breast cancer cells. Mol. Cell Biol. 29, 5488-5504.   DOI
25 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, and Ferrin TE. 2004. UCSF chimera--visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612.   DOI