• Title/Summary/Keyword: Nrf2 activation

Search Result 166, Processing Time 0.036 seconds

Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells

  • Lee, Eun Kyeong;Kim, Jin-Ah;Park, Seong Joon;Kim, Jeung Ki;Heo, Kyu;Yang, Kwang Mo;Son, Tae Gen
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.258-263
    • /
    • 2013
  • In the current study, we explored the effect of LDR on the activation of Nrfs transcription factor involved in cellular redox events. Experiments were carried out utilizing 0.05 and 0.5 Gy X-ray irradiated normal human skin fibroblast HS27 cells. The results showed LDR induced Nrf1 and Nrf2 activation and expression of antioxidant genes HO-1, Mn-SOD, and NQO1. In particular, 0.05 Gy-irradiation increased only Nrf1 activation, but 0.5 Gy induced both Nrf1 and Nrf2 activation. LDR-mediated Nrf1/2 activation was accompanied by reactive species (RS) generation and $Ca^{2+}$ flux. This effect was abolished in the presence of N-acetyl-cysteine and BAPTA- AM. Furthermore, Nrf1/2 activation by LDR was suppressed by PD98059, an inhibitor of ERK1/2. In conclusion, LDR induces Nrf1 and Nrf2 activation and expression of Nrf-regulated antioxidant defense genes through RS and $Ca^{2+}$/ERK1/2 pathways, suggesting new insights into the molecular mechanism underlying the beneficial role of LDR in HS27 cells.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

Hepatoprotective effect of Ikwiseungyang-tang via Nrf2 activation (Nrf2 활성화를 통한 익위승양탕(益胃升陽湯)의 간세포 보호 효과)

  • Jin, Hyo Jeong;Park, Sang Mi;Kim, Eun Ok;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.167-179
    • /
    • 2021
  • Objectives : Oxidative stress is a important cause of liver disease, and regulation of oxidative stress is essential to maintain the normal metabolic function of the liver. Until a recent date, there has been no studies on the hepatoprotective effect of Ikwiseungyang-tang (IWSYT). Therefore, this study aims to demonstrate the hepatoprotective effect of IWSYT and its related molecular mechanisms on arachidonic acid (AA) + iron induced oxidative stress model in HepG2 cells. Methods : To determine the cytoprotective effect of IWSYT against AA + iron-induced oxidative stress, cell viability, apoptosis-related proteins, intracellular reactive oxygen species (ROS), GSH, and mitochondrial membrane potential (MMP) were measured. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation was analyzed by immunoblot analysis. In addition, Nrf2 transcription activation through ARE binding was measured by reporter gene assays, and the expression of the Nrf2 target antioxidant genes were confirmed by immunoblot analysis. Results : IWSYT increased cell viability from cell death induced by AA + Iron, and inhibited apoptosis by regulating apoptosis-related proteins. Furthermore, IWSYT protected cells by inhibiting intracellular ROS production, GSH depletion, and MMP degradation. Nrf2 activation was increased by IWSYT, and Nrf2 target genes were activated by IWSYT too. Conclusions : These results suggest that IWSYT can protect hepatocytes from oxidative stress through Nrf2 activation and can be potentially applied in the prevention and treatment of liver damage.

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

Kaurenoic acid, a natural substance from traditional herbal medicine, alleviates palmitate induced hepatic lipid accumulation via Nrf2 activation

  • Han, Changwoo
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.64-71
    • /
    • 2020
  • Objectives: This study was done to look into whether Nrf2 take some role in the anti-lipogenic effect of kaurenoic acid in a nonalcoholic fatty liver disease (NAFLD) cellular model. Materials and Methods: We measured the effect of kaurenoic acid on intracellular steatosis and Nrf2 activation. Next, the effect of kaurenoic acid on SREBP-1c and some lipogenic genes in palmitate treated HepG2 cells with or without Nrf2 silencing. Results: The increased SREBP-1c expression was significantly decreased by concomitant kaurenoic acid treatment in non-targeting negative control siRNA transfected HepG2 cells. However, kaurenoic acid did not significantly inhibited increased SREBP-1c level in Nrf2 specific siRNA transfected HepG2 cells Conclusions: Kaurenoic acid has a potential to activate Nrf2, which may suppress SREBP-1c mediated intracellular steatosis in HepG2 cells.

Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain

  • Itoh, Ken;Wakabayashi, Nobunao;Katoh, Yasutake;Ishii, Tetsuro;Igarashi, Kazuhiko;Engel, James Douglas;Yamamoto, Masayuki
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.05a
    • /
    • pp.25-35
    • /
    • 2002
  • Transcription factor Nrf2 is essential for the antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes. Detailed analysis of differential Nrf2 activity displayed in transfected cell lines ultimately led to the identification of a new protein, which we named Keap1, that suppresses Nrf2 transcriptional activity by specific binding to its evolutionarily conserved amino-terminal regulatory domain. The closest homolog of Keap1 is a Drosophila actin-binding protein called Kelch, implying that Keap1 might be a Nrf2 cytoplasmic effector. We then showed that electrophilic agents antagonize Keap1 inhibition of Nrf2 activity in vivo, allowing Nrf2 to traverse from the cytoplasm to the nucleus and potentiate the ARE response. We postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel Nrf2 nuclear shuttling mechanism. The activation of Nrf2 leads in turn to the induction of phase II enzyme and antioxidative stress genes in response to electrophiles and reactive oxygen species.

  • PDF

Auranofin Downregulates Nuclear Factor-κB Activation via Nrf2-Independent Mechanism (오라노핀에 의한 nuclear factor κB 활성저해는 Nrf2 활성화와 무관한 기전에 의함)

  • Kim, Nam-Hoon;Park, Hyo-Jung;Kim, In-Sook
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1772-1776
    • /
    • 2010
  • Transcription factors Nrf2 and NF-${\kappa}B$ are important regulators of the innate immune response, and their cross-talks in inflammation have been reported. Previously, we demonstrated that gold(I)-compound auranofin, an inhibitor of NF-${\kappa}B$ signal, induced Nrf2 activation in human synovial cells and monocytic cells. To investigate whether the Nrf2 activation is involved in the mechanism of the auranofin-attenuated NF-${\kappa}B$ signaling, we examined the effects of Nrf2 knockdown on NF-${\kappa}B$ activation using rheumatic synovial cells. When the cells were transfected with a specific siRNA for Nrf2, the gene expression was perfectly blocked. However, the Nrf2 knockdown did not cancel the suppressive effect of auranofin on TNF-$\alpha$-induced $I{\kappa}B-{\alpha}$ degradation. Treatment with a specific siRNA for HO-1, which is a target of Nrf2 and plays a role in anti-inflammation, also did not affect the blocking activity of auranofin on $I{\kappa}B-{\alpha}$ degradation. In addition, auranofin-inhibited ICAM-1 expression was not restored by Nrf2 knockdown. These findings indicate that the activated Nrf2 and HO-1 are not associated with the suppressive action of auranofin on the pro-inflammatory cytokines-stimulated NF-${\kappa}B$ activation. This suggests that Nrf2/HO-1 and NF-${\kappa}B$ signals, which are regulated by auranofin, participate in the anti-inflammatory action of auranofin via independent pathways in rheumatic synovial cells.

Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells

  • Jang, Da Eun;Song, Junbin;Park, Jeong-Woo;Yoon, Soo-Hyun;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.272-277
    • /
    • 2020
  • Protein kinase CK2 downregulation induces premature senescence in various human cell types via activation of the reactive oxygen species (ROS)-p53-p21Cip1/WAF1 pathway. The transcription factor "nuclear factor erythroid 2-related factor 2" (Nrf2) plays an important role in maintaining intracellular redox homeostasis. In this study, Nrf2 overexpression attenuated CK2 downregulation-induced ROS production and senescence markers including SA-β-gal staining and activation of p53-p21Cip1/WAF1 in human breast (MCF-7) and colon (HCT116) cancer cells. CK2 downregulation reduced the transcription of Nrf2 target genes, such as glutathione S-transferase, glutathione peroxidase 2, and glutathione reductase 1. Furthermore, CK2 downregulation destabilized Nrf2 protein via inhibiting autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Finally, CK2 downregulation decreased the nuclear import of Nrf2 by deactivating AMP-activated protein kinase (AMPK). Collectively, our data suggest that both Keap1 stabilization and AMPK inactivation are associated with decreased activity of Nrf2 in CK2 downregulation-induced cellular senescence.

NRF2 activation by 2-methoxycinnamaldehyde attenuates inflammatory responses in macrophages via enhancing autophagy flux

  • Kim, Bo-Sung;Shin, Minwook;Kim, Kyu-Won;Ha, Ki-Tae;Bae, Sung-Jin
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.407-412
    • /
    • 2022
  • A well-controlled inflammatory response is crucial for the recovery from injury and maintenance of tissue homeostasis. The anti-inflammatory response of 2-methoxycinnamaldehyde (2-MCA), a natural compound derived from cinnamon, has been studied; however, the underlying mechanism on macrophage has not been fully elucidated. In this study, LPS-stimulated production of TNF-α and NO was reduced by 2-MCA in macrophages. 2-MCA significantly activated the NRF2 pathway, and expression levels of autophagy-associated proteins in macrophages, including LC3 and P62, were enhanced via NRF2 activation regardless of LPS treatment, suggesting the occurrence of 2-MCA-mediated autophagy. Moreover, evaluation of autophagy flux using luciferase-conjugated LC3 revealed that incremental LC3 and P62 levels are coupled to enhanced autophagy flux. Finally, reduced expression levels of TNF-α and NOS2 by 2-MCA were reversed by autophagy inhibitors, such as bafilomycin A1 and NH4Cl, in LPS-stimulated macrophages. In conclusion, 2-MCA enhances autophagy flux in macrophages via NRF2 activation and consequently reduces LPS-induced inflammation.